Example \(Sp(6,\mathbb R)\)¶
Let us find the discrete series for this group:
atlas> G:=Sp(6,R)
Value: connected split real group with Lie algebra 'sp(6,R)'
atlas> set F=distinguished_fiber (G)
Variable F: [int]
atlas> F
Value: [0,1,2,3,4,5,6,7]
atlas>
atlas> ds:=all_discrete_series (G,rho(G)) Value: [final
parameter(x=0,lambda=[3,2,1]/1,nu=[0,0,0]/1),final
parameter(x=1,lambda=[3,2,1]/1,nu=[0,0,0]/1),final
parameter(x=2,lambda=[3,2,1]/1,nu=[0,0,0]/1),final
parameter(x=3,lambda=[3,2,1]/1,nu=[0,0,0]/1),final
parameter(x=4,lambda=[3,2,1]/1,nu=[0,0,0]/1),final
parameter(x=5,lambda=[3,2,1]/1,nu=[0,0,0]/1),final
parameter(x=6,lambda=[3,2,1]/1,nu=[0,0,0]/1),final
parameter(x=7,lambda=[3,2,1]/1,nu=[0,0,0]/1)]
atlas> show(ds)
final parameter(x=0,lambda=[3,2,1]/1,nu=[0,0,0]/1)
final parameter(x=1,lambda=[3,2,1]/1,nu=[0,0,0]/1)
final parameter(x=2,lambda=[3,2,1]/1,nu=[0,0,0]/1)
final parameter(x=3,lambda=[3,2,1]/1,nu=[0,0,0]/1)
final parameter(x=4,lambda=[3,2,1]/1,nu=[0,0,0]/1)
final parameter(x=5,lambda=[3,2,1]/1,nu=[0,0,0]/1)
final parameter(x=6,lambda=[3,2,1]/1,nu=[0,0,0]/1)
final parameter(x=7,lambda=[3,2,1]/1,nu=[0,0,0]/1)
Again, like in the case of \(Sp(4,\mathbb R)\) we can try to write
each parameter in terms of a single x
that has the usual compact
simple roots. By looking at each x
.
A more efficient way to do this is the following:
atlas> void: for i in F do prints(i," ",rho_K(KGB(G,i))) od
0 [ 1, 1, 0 ]/1
1 [ 1, 1, 0 ]/1
2 [ 1, 0, 1 ]/1
3 [ 1, 1, 0 ]/1
4 [ 1, 1, 0 ]/1
5 [ 1, 0, -1 ]/1
6 [ 1, 0, 1 ]/1
7 [ 1, 0, -1 ]/1
atlas>
We have two choices of x
with the standard rho
: x=5
and
x=7
. We choose one:
atlas> x_b:=KGB(G,5)
Value: KGB element #5
atlas> simple_roots(K_0(x_b))
Value:
| 1, 0 |
| -1, 1 |
| 0, -1 |
atlas>
atlas> void: for p in ds do prints(x(p), " ", hc_parameter (p, x_b)) od
KGB element #0 [ 3, 1, -2 ]/1
KGB element #1 [ 2, 1, -3 ]/1
KGB element #2 [ 3, 2, -1 ]/1
KGB element #3 [ 3, -1, -2 ]/1
KGB element #4 [ 2, -1, -3 ]/1
KGB element #5 [ 3, 2, 1 ]/1
KGB element #6 [ 1, -2, -3 ]/1
KGB element #7 [ -1, -2, -3 ]/1
atlas>
These lambdas
are the conjugates of rho
which are
\(K\)-dominant. That is, modulo \(W_K\). They are all
decreasing. So they are the usual Harish-Candra parameters for the
eight discrete series of \(Sp(6,\mathbb R)\).
Now, as for previous examples we can write:
atlas> p:=discrete_series (x_b,[-1,-2,-3])
Value: final parameter(x=7,lambda=[3,2,1]/1,nu=[0,0,0]/1)
atlas>
So atlas
knows what this is and makes lambda
dominant and conjugates x_b
to x_7
.