Roots and Weights¶
Function | Argument(s) -> Result(s) |
---|---|
simple_roots | (RootDatum->mat) |
simple_coroots | (RootDatum->mat) |
posroots | (RootDatum->mat) |
poscoroots | (RootDatum->mat) |
roots | (RootDatum->mat) |
coroots | (RootDatum->mat) |
root_coradical | (RootDatum->mat) |
coroot_radical | (RootDatum->mat) |
fundamental_weight | (RootDatum,int->ratvec) |
fundamental_coweight | (RootDatum,int->ratvec) |
nr_of_posroots | (RootDatum->int) |
root_index | (RootDatum->int) |
coroot_index | (RootDatum,vec->int) |
integrality_datum | (RootDatum,ratvec->RootDatum) |
integrality_points | (Rootdatum,ratvec->[rat]) |
simple_roots¶
(RootDatum->mat)
: matrix of simple roots in the root datum.
simple_coroots¶
(RootDatum->mat)
: matrix of simple coroots in the root datum.
posroots¶
(RootDatum->mat)
: matrix of positive roots in the root datum.
poscoroots¶
(RootDatum->mat)
: matrix of positive coroots in the root datum.
roots¶
(RootDatum->mat)
: set of roots in the root datum (columns of result).
coroots¶
(RootDatum->mat)
: set of coroots in the root datum (as columns).
root_coradical¶
(RootDatum->mat)
: simple roots and coradical basis.With respect to simple_roots, add columns for coradical basis generators.
coroot_radical¶
(RootDatum->mat)
: simple coroots and radical basis.With respect to
simple_coroots
, add columns for radical basis generators.
fundamental_weight¶
(RootDatum,int->ratvec)
: fundamental weight number \(i\).
fundamental_coweight¶
(RootDatum,int->ratvec)
: fundamental coweight number \(i\).
nr_of_posroots¶
(RootDatum->int)
: Number of positive roots in the root datum.
root_index¶
(RootDatum,vec->int)
: Index of root with respect to posroots.
coroot_index¶
(RootDatum,vec->int)
: Index of coroot with respect to poscoroots.These functions look up the vector in
posroots(rd)
orposcoroots(rd)
, and return the index found shifted down bynr_of_posroots(rd)
, so that the simple roots start at 0, and negative roots give a negative result. In case the vector is not found at all, the valuenr_of_posroots(rd)
is returned.
integrality_datum¶
(RootDatum,ratvec->RootDatum)
: integral coroots subdatum.Applied to
(rd,gamma)
, forms the root datum whose coroots form the closed subsystem of the coroots of rd that take an integral value on gamma.
integrality_points¶
(RootDatum,ratvec->[rat])
: fractions with integrality.The call integrality_points(rd,lambda) returns the increasing list of positive fractions f<=1 so f* lambda has more integrality than generically: for some coroot alphav one has integral and nonzero value
<alphav,f*lambda>
.