parabolics.at Function References¶
sort_by¶
sort_by:(KGBElt -> int) f->([KGBElt] v) [KGBElt]
Defined in line number 61.Given a list of KGB elements and a function f assigning integers to them, sort the list by weakly increasing value of f.
KGP_elt¶
KGP_elt:KGPElt pair->KGPElt
Defined in line number 75.S¶
S:KGPElt(S,)->[int]
Defined in line number 78.The list S of simple roots of a KGP element.
root_datum¶
root_datum:KGPElt(,x)->RootDatum
Defined in line number 81.The root datum of the RealForm G of a KGP element.
real_form¶
real_form:KGPElt(,x)->RealForm
Defined in line number 84.The RealForm G of a KGP element.
complement¶
complement:int n,[int] S->[int]
Defined in line number 87.Complement of subset of simple roots in rank n.
find_ascent¶
find_ascent:[int] S, KGBElt x->[KGBElt]
Defined in line number 91.An ascent of x by a generator in S, if any exist.
down_neighbors¶
down_neighbors:[int] S,KGBElt x->[int]
Defined in line number 99.All descents of x by generators in S; there may be duplicates.
is_maximal_in_partial_order¶
is_maximal_in_partial_order:[int] S,KGBElt x->bool
Defined in line number 110.Decide whether x is maximal in the partial order defined by S.
maxima_in_partial_order¶
maxima_in_partial_order:RealForm G,[int] S->[KGBElt]
Defined in line number 113.List maximal KGB elements in the partial order defined by S.
maximal¶
maximal:[int] S, KGBElt x->KGBElt
Defined in line number 119.(Unique) maximal element in equivalence class of x.
canonical_representative¶
canonical_representative:KGPElt y->KGPElt
Defined in line number 124.The representative of a KGP element with maximal x.
=¶
=:KGPElt (S,x),KGPElt (T,y)->bool
Defined in line number 131.Equality of KGP elements: (S,x)=(T,y) if these give the same K-orbit of parabolics.
equivalence_class_of¶
equivalence_class_of:KGPElt(S,x)->[KGBElt]
Defined in line number 135.The equivalence class of a KGB element in partial order defined by S.
rec_fun x_min¶
rec_fun x_min:KGPElt P->KGBElt
Defined in line number 149.A minimal KGB element from an equivalence class defined by S (unlike x_max, it is not unique).
KGP¶
KGP:RealForm G,[int] S->[KGPElt]
Defined in line number 155.The set of KGP elements associated to a RealForm and a set of simple roots S; KGP(G,S) is in bijection with \(K\backslash G/P_S\) .
KGP_numbers¶
KGP_numbers:RealForm G,[int] S->[int]
Defined in line number 159.Just the index numbers (maximal x) of KGP(G,S).
is_open¶
is_open:KGPElt y->bool
Defined in line number 163.Test whether y in \(K\backslash G/P_S\) is open: <=> last element of y is last element of KGB.
is_closed¶
is_closed:KGPElt P->bool
Defined in line number 166.Test whether y in \(K\backslash G/P_S\) is closed: <=> length(first element)=0.
KGP_elt¶
KGP_elt:ratvec lambda,KGBElt x->KGPElt
Defined in line number 169.Parabolic determined by (the stabilizer in W of) a weight lambda.
complex_parabolic¶
complex_parabolic:Parabolic(S,x)->ComplexParabolic
Defined in line number 179.The complex parabolic underlying P=(S,x).
complex_Levi¶
complex_Levi:RootDatum rd, (int->bool) select->RootDatum
Defined in line number 182.Auxiliary function
is_Levi_theta_stable¶
is_Levi_theta_stable:Parabolic (S,x)->bool
Defined in line number 192.Test if a complex Levi defined by a set of simple roots S is \(\theta_x\) -stable; algorithm: H=sum of fundamental coweights with index not in S, test whether \(<\theta_x(\alpha),H>=0\) for all \(\alpha\) in S.
Levi¶
Levi:Parabolic(S,x):P->RealForm
Defined in line number 204.Make a real Levi factor from P=(S,x); the complex Levi of S must be theta-stable.
is_parabolic_theta_stable¶
is_parabolic_theta_stable:Parabolic (S,x):P->bool
Defined in line number 213.Test if parabolic P=(S,x) is theta-stable: <=> the complex Levi factor L is theta-stable, P is closed, and for alpha simple, not in S => alpha is imaginary or C+ wrt maximal(P).
is_parabolic_real¶
is_parabolic_real:Parabolic (S,x):P->bool
Defined in line number 224.Test if parabolic P=(S,x) is real: <=> L is theta-stable, P is open, and for alpha simple, not in S => alpha is real or C- wrt a maximal(P).
rho_u¶
rho_u:ComplexParabolic P->ratvec
Defined in line number 245.Half sum of positive roots not in the Levi (L must be theta-stable).
rho_u¶
rho_u:Parabolic P->ratvec
Defined in line number 248.Half sum of positive roots not in the Levi (L must be theta-stable).
rho_l¶
rho_l:Parabolic P->ratvec
Defined in line number 251.Half sum of positive roots in the Levi (L must be theta-stable).
nilrad¶
nilrad:Parabolic P->mat
Defined in line number 254.Positive coroots in the nilradical u of P (L must be theta-stable).
nilrad_roots¶
nilrad_roots:Parabolic P->mat
Defined in line number 259.Positive roots in the nilradical u of P (L must be theta-stable).
zero_simple_coroots¶
zero_simple_coroots:RootDatum rd, vec lambda->[int]
Defined in line number 272.Simple coroots on which weight lambda (in \(\mathfrak h^*\) ) is zero.
parabolic¶
parabolic:ratvec lambda,KGBElt x->Parabolic
Defined in line number 279.Parabolic defined by weight lambda; message whether parabolic is real or theta-stable.
parabolic_mute¶
parabolic_mute:ratvec lambda,KGBElt x->Parabolic
Defined in line number 290.Parabolic defined by weight lambda; NO message whether parabolic is real or theta-stable.
theta_stable_parabolic¶
theta_stable_parabolic:ratvec lambda,KGBElt x->Parabolic
Defined in line number 297.Theta-stable parabolic defined by weight lambda.
real_parabolic¶
real_parabolic:ratvec lambda,KGBElt x->Parabolic
Defined in line number 301.Real parabolic defined by weight lambda.
Levi¶
Levi:ratvec lambda,KGBElt x->RealForm
Defined in line number 305.Levi factor of parabolic defined by weight lambda.
theta_stable_Levi¶
theta_stable_Levi:ratvec lambda, KGBElt x->RealForm
Defined in line number 308.Levi factor of theta-stable parabolic defined by weight lambda.
real_Levi¶
real_Levi:ratvec lambda, KGBElt x->RealForm
Defined in line number 312.Levi factor of real parabolic defined by weight lambda.
nilrad¶
nilrad:ratvec lambda,KGBElt x->mat
Defined in line number 316.Positive coroots in nilradical of P defined by weight lambda (if L theta-stable).
nilrad_roots¶
nilrad_roots:ratvec lambda,KGBElt x->mat
Defined in line number 319.Positive roots in nilradical of P defined by weight lambda (if L theta-stable).
rho_u¶
rho_u:ratvec lambda,KGBElt x->ratvec
Defined in line number 324.Half sum of positive roots in nilradical of P defined by weight lambda (if L theta-stable).
zero_simple_roots¶
zero_simple_roots:RootDatum rd, vec cowt->[int]
Defined in line number 327.Simple roots which are zero on coweight H (in \(\mathfrak h\) ).
parabolic_alt¶
parabolic_alt:ratvec H,KGBElt x->Parabolic
Defined in line number 334.Parabolic defined by coweight H; message whether parabolic is real or theta-stable.
Levi_alt¶
Levi_alt:ratvec H,KGBElt x->RealForm
Defined in line number 344.Levi factor of parabolic defined by coweight H.
nilrad_alt¶
nilrad_alt:ratvec H,KGBElt x->mat
Defined in line number 347.Positive coroots in nilradical of P defined by coweight H (if L theta-stable).
nilrad_roots_alt¶
nilrad_roots_alt:ratvec H,KGBElt x->mat
Defined in line number 350.Positive roots in nilradical of P defined by coweight H (if L theta-stable).
rho_u_alt¶
rho_u_alt:ratvec H,KGBElt x->ratvec
Defined in line number 354.Half sum of roots in nilradical of P defined by coweight H (if L theta-stable).
rho_Levi_alt¶
rho_Levi_alt:ratvec H,KGBElt x->ratvec
Defined in line number 357.\(\rho(L)\) for Levi of P defined by coweight H (if L theta-stable).
real_parabolic¶
real_parabolic:KGBElt x->Parabolic
Defined in line number 365.Real parabolic defined by x has Levi factor M=centralizer(A), \(\mathfrak u\) =positive roots not in M; for M to be stable: x must have no C+ roots.
real_Levi¶
real_Levi:KGBElt x->RealForm
Defined in line number 370.Levi factor of real parabolic defined by x (must have no C+ roots).
theta_stable_parabolic¶
theta_stable_parabolic:KGBElt x->Parabolic
Defined in line number 377.Theta-stable parabolic defined by x has Levi factor L=centralizer(T), \(\mathfrak u\) =positive roots not in L; for this to be stable: no C- roots.
theta_stable_Levi¶
theta_stable_Levi:KGBElt x->RealForm
Defined in line number 382.Levi factor of theta-stable parabolic defined by x (must have no C- roots).
is_standard_Levi¶
is_standard_Levi:RealForm L,RealForm G->bool
Defined in line number 386.Check whether a Levi subgroup L is standard in G (simple roots of L are simple for G).
KGP¶
KGP:RealForm G,ComplexParabolic (rd,S)->[KGPElt]
Defined in line number 395.List of K-conjugacy classes of given ComplexParabolic (as KGP elts).
parabolics¶
parabolics:RealForm G,ComplexParabolic (rd,S)->[Parabolic]
Defined in line number 399.List K-conjugacy classes of given ComplexParabolic (as Parabolics).
theta_stable_parabolics¶
theta_stable_parabolics:RealForm G,ComplexParabolic P->[Parabolic]
Defined in line number 403.List K-conjugacy classes of given ComplexParabolic that are theta-stable.
theta_stable_parabolics¶
theta_stable_parabolics:RealForm G->[Parabolic]
Defined in line number 409.List all theta-stable parabolics for G.
theta_stable_parabolics_type¶
theta_stable_parabolics_type:RealForm G,[int] P->[Parabolic]
Defined in line number 416.List all theta-stable parabolics of G, of type S.
all_rel_split_theta_stable_parabolics¶
all_rel_split_theta_stable_parabolics:RealForm G->[Parabolic]
Defined in line number 422.List all theta-stable parabolics of G with relatively split L.
print_theta_stable_parabolics¶
print_theta_stable_parabolics:RealForm G->void
Defined in line number 435.For each theta-stable parabolic of G, print S, Levi factor, and maximal x.
support¶
support:KGBElt x->[int]
Defined in line number 441.The smallest list of simple roots such that descents lead to the distinguished fiber.
support_alt¶
support_alt:KGBElt x->[int]
Defined in line number 450.Auxiliary function.
KGPElt¶
([int], KGBElt)
Defined in line number 54.Data type for a K_orbit on G/P_S, equivalently a K-conjugacy class of parabolics of type S.
Parabolic¶
([int], KGBElt)
Defined in line number 57.Data type for a K_orbit on G/P_S (synonym for KGPElt).
ComplexParabolic¶
(RootDatum,[int])
Defined in line number 176.Data type for a complex parabolic subrgoup