basic.at Function Index¶
Functions
| Function | Argument(s) -> Results |
|---|---|
| # | int n->[int]: for i |
| # | bool b->int |
| assert | bool b,string message->void |
| assert | bool b->void |
| list | (int->bool) filter, int limit->[int] |
| complement | (int->bool) filter, int limit->[int] |
| count | (int->bool) filter, int limit->int |
| all | [bool] p->bool |
| none | [bool] p->bool |
| first | [bool] p->int |
| last | [bool] p->int |
| all | int limit,(int->bool) filter->bool |
| none | int limit,(int->bool) filter->bool |
| first | int limit,(int->bool) filter->int |
| last | int limit,(int->bool) filter->int |
| all | [(->bool)] p->bool |
| none | [(->bool)] p->bool |
| first | [(->bool)] p->int |
| last | [(->bool)] p->int |
| binary_search_first | (int->bool)pred, int low, int high->int |
| from_stops | [int] stops->(int->int) |
| abs | int k->int |
| sign | int k->int |
| is_odd | int n->bool |
| is_even | int n->bool |
| min | int k, int l->int |
| max | int k, int l->int |
| min | [int] a->int |
| max | [int] a->int |
| min_loc | [int] a->int |
| max_loc | [int] a->int |
| min | int !seed->([int]->int) |
| max | int !seed->([int]->int) |
| lcm | [int] list) = let (,d->%(ratvec |
| = | (int,int)(x0,y0),(int,int)(x1,y1)->bool |
| != | (int,int)(x0,y0),(int,int)(x1,y1)->bool |
| is_integer | rat r->bool |
| sign | rat a->int |
| abs | rat a->rat |
| floor | rat a->int |
| ceil | rat a->int |
| \_(rat,int)p->int1 | (rat,int)p->int |
| \_(rat,rat)p->int1 | (rat,rat)p->int |
| % | (rat,int)p->(int,rat) |
| % | (rat,rat)p->(int,rat) |
| floor | [rat] v->vec |
| ceil | [rat] v->vec |
| rat_as_int | rat r->int |
| * | int n,string s->string |
| + | string s, int i->string |
| + | int i, string s->string |
| plural | int n->string |
| plural | int n,string s->string |
| l_adjust | int w, string s->string |
| r_adjust | int w, string s->string |
| c_adjust | int w, string s->string |
| width | int n->int |
| split_lines | string text->[string] |
| is_substring | string s, string text->bool |
| fgrep | string s, string text->[string] |
| vector | int n,(int->int)f->vec: for i |
| ones | int n->vec: for i |
| gcd | [int] v->int |
| * | int c,vec v->vec |
| sum | vec v->int |
| product | vec v->1 in for e in v do s* |
| half | int n->int |
| reverse | vec v->vec: v~[ |
| lower | int k,vec v->vec: v[ |
| upper | int k,vec v->vec: v[k~ |
| drop_lower | int k,vec v->vec: v[k |
| drop_upper | int k,vec v->vec: v[ |
| <= | vec v->bool |
| < | vec v->bool |
| is_member | [int] v->(int->bool) |
| contains | int val->([int]->bool): ([int] v)bool |
| rec_fun all_0_1_vecs | int n->[vec] |
| rec_fun power_set | int n->[[int]] |
| power_set | [int] S->[[int]] |
| matrix | (int,int)(r,c),(int,int->int) f->mat |
| n_rows | mat m->int |
| n_columns | mat m->int |
| column | vec v->mat |
| row | vec v->mat |
| = | mat m,int k->bool |
| # | mat m, vec v->mat: n_rows(m) # (([vec] |
| # | vec v, mat m->mat: n_rows(m) # (v#([vec] |
| ^ | mat m, vec v->mat: n_columns(m) ^ (([vec] |
| ^ | vec v, mat m->mat: n_columns(m) ^ (v#([vec] |
| ## | mat A, mat B->mat |
| ^ | mat A, mat B->mat |
| ## | int n,[mat] L->mat |
| map_on | mat m->((int->int)->mat) |
| * | int c,mat m->mat: map_on(m)((int e) int |
| - | mat m->mat |
| \_mat_m,int_d->mat:_map_on(m)((int_e)_int1 | mat m,int d->mat: map_on(m)((int e) int |
| % | mat m,int d->mat: map_on(m)((int e) int |
| inverse | mat M->mat |
| det | mat M->int |
| saturated_span | mat M->bool |
| all | mat M,(vec->bool) filter->bool |
| none | mat M,(vec->bool) filter->bool |
| first | mat M,(vec->bool) filter->int |
| last | mat M,(vec->bool) filter->int |
| columns_with | (int,vec->bool) p,mat m->mat |
| columns_with | (vec->bool) p,mat m->mat |
| columns_with | (int->bool) p,mat m->mat |
| rows_with | (int,vec->bool) p,mat m->mat |
| rows_with | (vec->bool) p,mat m->mat |
| rows_with | (int->bool) p,mat m->mat |
| >= | mat m->bool |
| > | mat m->bool |
| <= | mat m->bool |
| < | mat m->bool |
| lookup_column | vec v,mat m->int |
| lookup_row | vec v,mat m->int |
| sum | mat m->vec |
| order | mat !M->int |
| numer | ratvec a->vec |
| denom | ratvec a->int |
| * | int i,ratvec v->ratvec |
| * | rat r,ratvec v->ratvec |
| ## | ratvec a,ratvec b->ratvec: ##([rat]:a,[rat] |
| ## | [ratvec] rs->ratvec: ## for r in rs do [rat] |
| sum | [ratvec] list, int l->ratvec |
| * | [ratvec] M,ratvec v->ratvec |
| is_integer | ratvec v->bool |
| * | ratvec v, ratvec w->rat |
| * | vec v, ratvec w->rat |
| \_ratvec_v,_int_k->vec1 | ratvec v, int k->vec |
| ratvec_as_vec | ratvec v->vec |
| reverse | ratvec v->ratvec: v~[ |
| lower | int k,ratvec v->ratvec: v[ |
| upper | int k,ratvec v->ratvec: v[k~ |
| drop_lower | int k,ratvec v->ratvec: v[k |
| drop_upper | int k,ratvec v->ratvec: v[ |
| sum | ratvec v->rat |
| <= | ratvec v->bool |
| < | ratvec v->bool |
| solve | mat A, ratvec b->[ratvec] |
| one_minus_s = split:_1,-1->split1 | 1,-1->Split |
| int_part | Split x->int |
| s_part | Split x->int |
| s_to_1 | Split x->int |
| s_to_minus_1 | Split x->int |
| times_s | Split x) = let (a,b->%x in Split |
| split_as_int | Split x->int |
| % | Split x, int n->(Split,Split) |
| half | Split w->Split |
| / | Split w,int n->Split |
| % | Split w,int n->Split |
| exp_s | int n->Split |
| is_pure | Split w->bool |
| split_format | Split w->string |
| ^ =let rec_fun split_power | Split x,int n->Split |
| sum | [Split] list->Split |
| root_datum | [vec] simple_roots, [vec] simple_coroots, int r->RootDatum |
| root_datum | LieType t, [ratvec] gens->RootDatum |
| root_datum | LieType t, ratvec gen->RootDatum |
| is_root | (RootDatum,vec) (rd,):p->bool |
| is_coroot | (RootDatum,vec) (rd,):p->bool |
| is_posroot | (RootDatum,vec)(rd,):p->bool |
| is_poscoroot | (RootDatum,vec)(rd,):p->bool |
| posroot_index | (RootDatum,vec)p->int |
| poscoroot_index | (RootDatum,vec)p->int |
| rho | RootDatum rd->ratvec |
| rho_as_vec | RootDatum r->vec |
| rho_check | RootDatum rd->ratvec |
| is_positive_root | RootDatum rd->(vec->bool) |
| is_positive_coroot | RootDatum rd->(vec->bool) |
| is_negative_root | RootDatum rd->(vec->bool) |
| is_negative_coroot | RootDatum rd->(vec->bool) |
| is_positive_root | RootDatum rd,vec alpha->bool |
| is_positive_coroot | RootDatum rd,vec alphav->bool |
| is_negative_root | RootDatum rd,vec alpha->bool |
| is_negative_coroot | RootDatum rd,vec alphav->bool |
| roots_all_positive | RootDatum rd->(mat->bool) |
| coroots_all_positive | RootDatum rd->(mat->bool) |
| among_posroots | RootDatum rd->(mat M)bool |
| among_poscoroots | RootDatum rd->(mat M)bool |
| roots | RootDatum rd->mat |
| coroots | RootDatum rd->mat |
| root | RootDatum rd, vec alpha_v->vec |
| coroot | RootDatum rd, vec alpha->vec |
| reflection | RootDatum rd, int i->mat |
| reflection | (RootDatum,vec)(rd,):p->mat |
| coreflection | RootDatum rd, int i->mat |
| coreflection | (RootDatum,vec)(rd,):p->mat |
| reflect | RootDatum rd, int i, vec v->vec |
| reflect | RootDatum rd, vec alpha, vec v->vec |
| coreflect | RootDatum rd, vec v, int i->vec |
| coreflect | RootDatum rd, vec v, vec alpha->vec |
| reflect | RootDatum rd, int i, ratvec v->ratvec |
| reflect | RootDatum rd, vec alpha, ratvec v->ratvec |
| coreflect | RootDatum rd, ratvec v, int i->ratvec |
| coreflect | RootDatum rd, ratvec v, vec alpha->ratvec |
| left_reflect | RootDatum rd, int i, mat M->mat |
| left_reflect | RootDatum rd, vec alpha, mat M->mat |
| right_reflect | RootDatum rd, mat M, int i->mat |
| right_reflect | RootDatum rd, mat M, vec alpha->mat |
| conjugate | RootDatum rd, int i, mat M->mat |
| conjugate | RootDatum rd, vec alpha, mat M->mat |
| singular_simple_indices | RootDatum rd,ratvec v->[int] |
| is_imaginary | mat theta->(vec->bool): (vec alpha) |
| is_real | mat theta->(vec->bool): (vec alpha) |
| is_complex | mat theta->(vec->bool): (vec alpha) |
| imaginary_roots | RootDatum rd, mat theta->mat |
| real_roots | RootDatum rd, mat theta->mat |
| imaginary_coroots | RootDatum rd, mat theta->mat |
| real_coroots | RootDatum rd, mat theta->mat |
| imaginary_posroots | RootDatum rd,mat theta->mat |
| real_posroots | RootDatum rd,mat theta->mat |
| imaginary_poscoroots | RootDatum rd,mat theta->mat |
| real_poscoroots | RootDatum rd,mat theta->mat |
| imaginary_sys | (RootDatum,mat)p->(mat,mat) |
| real_sys | (RootDatum,mat)p->(mat,mat) |
| is_dominant | RootDatum rd, ratvec v->bool |
| is_strictly_dominant | RootDatum rd, ratvec v->bool |
| is_regular | RootDatum rd,ratvec v->bool |
| is_integral | RootDatum rd, ratvec v->bool |
| radical_basis | RootDatum rd->mat |
| coradical_basis | RootDatum rd->mat |
| is_semisimple | RootDatum rd->bool |
| derived_is_simply_connected | RootDatum rd->bool |
| has_connected_center | RootDatum rd->bool |
| is_simply_connected | RootDatum rd->bool |
| is_adjoint | RootDatum rd->bool |
| derived | RootDatum rd->RootDatum |
| mod_central_torus | RootDatum rd->RootDatum |
| adjoint | RootDatum rd->RootDatum |
| is_simple_for | vec dual_two_rho->(vec->bool) |
| simple_from_positive | mat posroots,mat poscoroots->(mat,mat) |
| fundamental_weights | RootDatum rd->[ratvec] |
| fundamental_coweights | RootDatum rd->[ratvec] |
| dual_integral | InnerClass ic, ratvec gamma->InnerClass |
| Cartan_classes | InnerClass ic->[CartanClass] |
| print_Cartan_info | CartanClass cc->void |
| fundamental_Cartan | InnerClass ic->CartanClass |
| most_split_Cartan | InnerClass ic->CartanClass |
| compact_rank | CartanClass cc->int |
| split_rank | CartanClass cc->int |
| compact_rank | InnerClass ic->int |
| split_rank | RealForm G->int |
| is_equal_rank | InnerClass ic->bool |
| is_split | RealForm G->bool |
| = | CartanClass H,CartanClass J->bool |
| number | CartanClass H,RealForm G->int |
| form_name | RealForm f->string |
| real_forms | InnerClass ic->[RealForm] |
| dual_real_forms | InnerClass ic->[RealForm] |
| is_quasisplit | RealForm G->bool |
| is_quasicompact | RealForm G->bool |
| split_form | RootDatum r->RealForm |
| split_form | LieType t->RealForm |
| quasicompact_form | InnerClass ic->RealForm |
| is_compatible | RealForm f, RealForm g->bool |
| is_compact | RealForm G->bool |
| root_datum | KGBElt x->RootDatum |
| inner_class | KGBElt x->InnerClass |
| KGB | RealForm rf->[KGBElt]: for i |
| KGB | CartanClass H,RealForm G->[KGBElt] |
| KGB_elt | (InnerClass, mat, ratvec) (,theta,v):all->KGBElt |
| KGB_elt | RootDatum rd, mat theta, ratvec v->KGBElt |
| Cartan_class | InnerClass ic, mat theta->CartanClass |
| Bruhat_order | RealForm G->(KGBElt,KGBElt->bool) |
| status | vec alpha,KGBElt x->int |
| cross | vec alpha,KGBElt x->KGBElt |
| Cayley | vec alpha,KGBElt x->KGBElt |
| W_cross | [int] w,KGBElt x->KGBElt |
| KGB_status_text | int i->string |
| status_text | (int,KGBElt)p->string |
| status_text | (vec,KGBElt)p->string |
| status_texts | KGBElt x->[string] |
| is_imaginary | KGBElt x->(vec->bool) |
| is_real | KGBElt x->(vec->bool) |
| is_complex | KGBElt x->(vec->bool) |
| imaginary_posroots | KGBElt x->mat |
| real_posroots | KGBElt x->mat |
| imaginary_poscoroots | KGBElt x->mat |
| real_poscoroots | KGBElt x->mat |
| imaginary_sys | KGBElt x->(mat,mat) |
| real_sys | KGBElt x->(mat,mat) |
| rho_i | KGBElt x->ratvec |
| rho_r | KGBElt x->ratvec |
| rho_check_i | KGBElt x->ratvec |
| rho_check_r | KGBElt x->ratvec |
| rho_i | (RootDatum,mat) rd_theta->ratvec |
| rho_r | (RootDatum,mat) rd_theta->ratvec |
| rho_check_i | (RootDatum,mat) rd_theta->ratvec |
| rho_check_r | (RootDatum,mat) rd_theta->ratvec |
| is_compact | KGBElt x->(vec->bool) |
| is_noncompact | KGBElt x->(vec->bool) |
| is_compact_imaginary | KGBElt x->(vec->bool) |
| is_noncompact_imaginary | KGBElt x->(vec->bool) |
| compact_posroots | KGBElt x->mat |
| noncompact_posroots | KGBElt x->mat |
| rho_ci | KGBElt x->ratvec |
| rho_nci | KGBElt x->ratvec |
| is_imaginary | vec v,KGBElt x->bool |
| is_real | vec v,KGBElt x->bool |
| is_complex | vec v,KGBElt x->bool |
| is_compact_imaginary | vec v,KGBElt x->bool |
| is_noncompact_imaginary | vec v,KGBElt x->bool |
| print_KGB | KGBElt x->void |
| no_Cminus_roots | KGBElt x->bool |
| no_Cplus_roots | KGBElt x->bool |
| blocks | InnerClass ic->[Block] |
| raw_KL | (RealForm,RealForm) p->(mat,[vec],vec) |
| dual_KL | (RealForm,RealForm) p->(mat,[vec],vec) |
| print_block | (RealForm,RealForm) p->void |
| print_blocku | (RealForm,RealForm) p->void |
| print_blockd | (RealForm,RealForm) p->void |
| print_KL_basis | (RealForm,RealForm) p->void |
| print_prim_KL | (RealForm,RealForm) p->void |
| print_KL_list | (RealForm,RealForm) p->void |
| print_W_cells | (RealForm,RealForm) p->void |
| print_W_graph | (RealForm,RealForm) p->void |
| root_datum | Param p->RootDatum |
| inner_class | Param p->InnerClass |
| null_module | Param p->ParamPol |
| x | Param p->KGBElt |
| lambda_minus_rho | Param p->vec |
| lambda | Param p->ratvec |
| infinitesimal_character | Param p->ratvec |
| nu | Param p->ratvec |
| Cartan_class | Param p->CartanClass |
| integrality_datum | Param p->RootDatum |
| is_regular | Param p->bool |
| survives | Param p->bool |
| trivial | RealForm G->Param |
| W_cross | [int] w,Param p->Param |
| parameter | RealForm G,int x,ratvec lambda,ratvec nu->Param |
| parameter | KGBElt x,ratvec lambda,ratvec nu->Param |
| parameter_gamma | KGBElt x, ratvec lambda, ratvec gamma->Param |
| singular_block | Param p->([Param],int) |
| block_of | Param p->[Param] |
| singular_block_of | Param p->[Param] |
| imaginary_type | int s, Param p->int |
| real_type | int s,Param p->int |
| imaginary_type | vec alpha, Param p->int |
| real_type | vec alpha, Param p->int |
| is_nonparity | int s,Param p->bool |
| is_parity | int s,Param p->bool |
| is_nonparity | vec alpha,Param p->bool |
| is_parity | vec alpha,Param p->bool |
| status | vec alpha,Param p->int |
| status | int s,Param p->int |
| block_status_text | int i->string |
| status_text | int s,Param p->string |
| status_texts | Param p->[string] |
| status_text | (vec,Param) ap->string |
| parity_poscoroots | Param p->mat |
| nonparity_poscoroots | Param p->mat |
| is_descent | int s,Param p->bool |
| tau_bitset | Param p->((int->bool),int) |
| tau | Param p->[int] |
| tau_complement | Param p->[int] |
| is_descent | (vec,Param) ap->bool |
| lookup | Param p, [Param] block->int |
| null_module | ParamPol P->ParamPol |
| - | ParamPol P->ParamPol |
| first_param | ParamPol P->Param |
| last_param | ParamPol P->Param |
| s_to_1 | ParamPol P->ParamPol |
| s_to_minus_1 | ParamPol P->ParamPol |
| - | ParamPol a, (Split,Param) (c,p)->ParamPol |
| sum | RealForm G,[ParamPol] Ps->ParamPol |
| map | (Param->Param)f, ParamPol P->ParamPol |
| map | (Param->ParamPol)f, ParamPol P->ParamPol |
| half | ParamPol P->ParamPol |
| divide_by | int n, ParamPol P->ParamPol |
| root_datum | ParamPol P->RootDatum |
| virtual | Param p->ParamPol |
| virtual | RealForm G, [Param] ps->ParamPol |
| branch | Param std, Param K_type->int |
| branch | ParamPol P, Param K_type->Split |
| pol_format | ParamPol P->string |
| infinitesimal_character | ParamPol P->ratvec |
| height_split | ParamPol P, int h->(ParamPol,ParamPol) |
| separate_by_infinitesimal_character | ParamPol P->[(ratvec,ParamPol)] |
| is_pure_1 | ParamPol P->bool |
| is_pure_s | ParamPol P->bool |
| is_pure | ParamPol P->bool |
| purity | ParamPol P->(int,int,int) |
| find | [int] v, int k->int: first(#v,(int i)bool |
| find | [Param] P,Param p->int: first(#P,(int i)bool |
| find | [KGBElt] S,KGBElt x->int: first(#S,(int i)bool |
| find | [vec] S,vec v->int: first(#S,(int i)bool |
| in_string_list | string s,[string] S->bool |
| delete | [int] v, int k->[int]: v[:k]##v[k+1 |
| delete | [vec] v, int k->[vec]: v[:k]##v[k+1 |
| delete | [ratvec] v, int k->[ratvec]: v[:k]##v[k+1 |
| delete | [[ratvec]] v, int k->[[ratvec]]:v[:k]##v[k+1 |
| delete | [[vec]] v, int k->[[vec]]: v[:k]##v[k+1 |
| delete | [ParamPol] P, int k->[ParamPol]:P[:k]##P[k+1 |
| imaginary_roots_and_coroots | (RootDatum, mat)p->(mat,mat) |
| imaginary_roots_and_coroots | KGBElt x->(mat,mat) |
| real_roots_and_coroots | (RootDatum, mat)p->(mat,mat) |
| real_roots_and_coroots | KGBElt x->(mat,mat) |
| complex_posroots | RootDatum rd,mat theta->mat |
| complex_posroots | KGBElt x->mat |
| pad | string s,int padding->string |
| monomials | ParamPol P->[Param] |
| monomial | ParamPol P,int i->Param |