atlas  0.6
Public Types | Public Member Functions | Protected Member Functions | Private Attributes | Friends | List of all members
atlas::weyl::WeylElt Class Reference

Element of a Weyl group. More...

#include <weyl.h>

Inheritance diagram for atlas::weyl::WeylElt:
Inheritance graph
[legend]

Public Types

typedef unsigned char EltPiece
 Represents a minimal length coset representative for one of the parabolic subquotients W_{i-1}\W_i. More...
 

Public Member Functions

 WeylElt ()
 Constructs the identity element of W. More...
 
 WeylElt (const WeylWord &w, const WeylGroup &W)
 interpret |w| in weyl group |W| More...
 
bool operator< (const WeylElt &w) const
 Tests whether this Weyl group element is lexicographically strictly less than the Weyl group element following the < sign. More...
 
bool operator== (const WeylElt &w) const
 Tests whether this Weyl group element is equal to the Weyl group element following the == sign. More...
 
bool operator!= (const WeylElt &w) const
 Tests whether this Weyl group element is not equal to the Weyl group element following the != sign. More...
 
const WeylEltw () const
 
WeylEltcontents ()
 

Protected Member Functions

EltPiece operator[] (size_t j) const
 Returns the jth factor of the Weyl group element. More...
 
EltPieceoperator[] (size_t j)
 

Private Attributes

EltPiece d_data [constants::RANK_MAX]
 Represents factorization of Weyl group element w as a product of shortest length coset representatives for parabolic subquotients W_{i-1}\W_i. More...
 

Friends

class WeylGroup
 

Detailed Description

Element of a Weyl group.

The representation is described in detail in the description of the class WeylGroup. An array of RANK_MAX unsigned char, the ith representing a shortest length coset representative of a parabolic subquotient W_{i-1}\W_i.

Member Typedef Documentation

typedef unsigned char atlas::weyl::WeylElt::EltPiece

Represents a minimal length coset representative for one of the parabolic subquotients W_{i-1}\W_i.

Constructor & Destructor Documentation

atlas::weyl::WeylElt::WeylElt ( )
inline

Constructs the identity element of W.

atlas::weyl::WeylElt::WeylElt ( const WeylWord w,
const WeylGroup W 
)

interpret |w| in weyl group |W|

Member Function Documentation

WeylElt& atlas::weyl::WeylElt::contents ( )
inline
bool atlas::weyl::WeylElt::operator!= ( const WeylElt w) const
inline

Tests whether this Weyl group element is not equal to the Weyl group element following the != sign.

bool atlas::weyl::WeylElt::operator< ( const WeylElt w) const
inline

Tests whether this Weyl group element is lexicographically strictly less than the Weyl group element following the < sign.

bool atlas::weyl::WeylElt::operator== ( const WeylElt w) const
inline

Tests whether this Weyl group element is equal to the Weyl group element following the == sign.

EltPiece atlas::weyl::WeylElt::operator[] ( size_t  j) const
inlineprotected

Returns the jth factor of the Weyl group element.

EltPiece& atlas::weyl::WeylElt::operator[] ( size_t  j)
inlineprotected
const WeylElt& atlas::weyl::WeylElt::w ( ) const
inline

Friends And Related Function Documentation

friend class WeylGroup
friend

Member Data Documentation

EltPiece atlas::weyl::WeylElt::d_data[constants::RANK_MAX]
private

Represents factorization of Weyl group element w as a product of shortest length coset representatives for parabolic subquotients W_{i-1}\W_i.

Entry #i-1 is an unsigned char parametrizing the ith coset representative w_i for an element of W_{i-1}\W_i. Then w = w_1.w_2...w_n.


The documentation for this class was generated from the following files: