|
| TitsCoset (const InnerClass &G, Grading base_grading) |
|
| TitsCoset (const InnerClass &G) |
|
| TitsCoset (const InnerClass &G, tags::DualTag) |
|
| ~TitsCoset () |
|
const TitsGroup & | titsGroup () const |
|
const WeylGroup & | weylGroup () const |
|
bool | hasTwistedCommutation (weyl::Generator s, const TwistedInvolution &tw) const |
|
Grading | base_grading () const |
|
bool | is_valid (TitsElt a) const |
|
bool | simple_grading (const TitsElt &a, size_t s) const |
|
bool | simple_imaginary_grading (TorusPart x, RootNbr alpha) const |
|
bool | grading (TitsElt a, RootNbr alpha) const |
|
void | basedTwistedConjugate (TitsElt &a, size_t s) const |
|
void | strict_based_twisted_conjugate (TitsElt &a, size_t s) const |
|
void | basedTwistedConjugate (TitsElt &a, const WeylWord &w) const |
|
void | basedTwistedConjugate (const WeylWord &w, TitsElt &a) const |
|
void | Cayley_transform (TitsElt &a, size_t s) const |
|
void | inverse_Cayley_transform (TitsElt &a, size_t s, const SmallSubspace &mod_space) const |
|
TitsElt | twisted (const TitsElt &a) const |
|
TorusPart | twisted (const TorusPart &t) const |
|
The class |TitsCoset| augments the |TitsGroup| class with the choice of a basic strong involution $$, which is needed to define the additional methods |simple_grading|, |basedTwistedConjugate| and |Cayley_transform| (although the latter happens to have an implementation independent of ).
All |TitsElement| values $t.$ get reinterpreted as $t..$ We are no longer in a group, but in a coset of the group. Also the images of the operations |basedTwistedConjugate| and |Cayley_transform| are only defined modulo the equivalence relation generated by conjugation by torus elements. If conjugation by $w.$ acts as $$ on the Lie algebra $h$ of $H$, then the equivalence class of $a=t..$ is obtained by modifying $t$ by any value in the direction of the image of $-1$ (the $-1$ eigenspace of $$; in the concrete representation |TorusPart|, by any reduction modulo 2 of a $-$ fixed vector). In practice this means most of all that any torus element $x$ the elements $x.a$ and $(x).a=a.x$ and are equivalent.