atlas
0.6
|
#include <standardrepk.h>
Public Member Functions | |
SRK_context (RealReductiveGroup &G) | |
InnerClass & | innerClass () const |
const RootDatum & | rootDatum () const |
const WeylGroup & | weylGroup () const |
const TwistedWeylGroup & | twistedWeylGroup () const |
const TitsGroup & | titsGroup () const |
const TitsCoset & | basedTitsGroup () const |
const TwistedInvolution | involution_of_Cartan (size_t cn) const |
const Fiber & | fiber (const StandardRepK &sr) const |
const KGB & | kgb () const |
const Cartan_info & | info (size_t cn) const |
const BinaryMap & | dual_reflection (weyl::Generator i) const |
HCParam | project (size_t cn, Weight lambda) const |
Weight | lift (size_t cn, HCParam p) const |
Weight | theta_lift (size_t cn, HCParam p) const |
Weight | lift (const StandardRepK &s) const |
Weight | theta_lift (const StandardRepK &s) const |
StandardRepK | std_rep (const Weight &two_lambda, TitsElt a) const |
StandardRepK | std_rep_rho_plus (Weight lambda, TitsElt a) const |
StandardRepK | KGB_elt_rep (KGBElt z) const |
RawRep | Levi_rep (Weight lambda, TitsElt a, RankFlags gens) const |
bool | isStandard (const StandardRepK &sr, size_t &witness) const |
bool | isNormal (Weight lambda, size_t cn, size_t &witness) const |
bool | isNormal (const StandardRepK &sr, size_t &witness) const |
bool | isZero (const StandardRepK &sr, size_t &witness) const |
bool | isFinal (const StandardRepK &sr, size_t &witness) const |
void | normalize (StandardRepK &sr) const |
q_Char | q_normalize_eq (const StandardRepK &sr, size_t witness) const |
q_Char | q_reflect_eq (const StandardRepK &sr, size_t i, Weight lambda, const Weight &cowt) const |
TitsElt | titsElt (const StandardRepK &s) const |
KGBEltList | sub_KGB (const PSalgebra &q) const |
PSalgebra | theta_stable_parabolic (const StandardRepK &sr, WeylWord &conjugator) const |
CharForm | K_type_formula (const StandardRepK &sr, level bound=~0u) |
q_CharForm | q_K_type_formula (const StandardRepK &sr, level bound=~0u) |
HechtSchmid | HS_id (const StandardRepK &s, RootNbr alpha) const |
HechtSchmid | back_HS_id (const StandardRepK &s, RootNbr alpha) const |
q_Char | q_HS_id_eq (const StandardRepK &s, RootNbr alpha) const |
level | height (const StandardRepK &s) const |
level | height_bound (const Weight &lambda) |
Lower bound for height of representation after adding positive roots. More... | |
std::ostream & | print (std::ostream &strm, const StandardRepK &sr) const |
std::ostream & | print (std::ostream &strm, const Char &ch) const |
std::ostream & | print (std::ostream &strm, const q_Char &ch) const |
Private Member Functions | |
RawChar | KGB_sum (const PSalgebra &q, const Weight &lambda) const |
Raw_q_Char | q_KGB_sum (const PSalgebra &q, const Weight &lambda) const |
const proj_info & | get_projection (RankFlags gens) |
Private Attributes | |
RealReductiveGroup & | G |
BitMap | Cartan_set |
std::vector< Cartan_info > | C_info |
std::vector< BinaryMap > | simple_reflection_mod_2 |
bitset_entry::Pooltype | proj_pool |
HashTable< bitset_entry, unsigned int > | proj_sets |
std::vector< proj_info > | proj_data |
atlas::standardrepk::SRK_context::SRK_context | ( | RealReductiveGroup & | G | ) |
HechtSchmid atlas::standardrepk::SRK_context::back_HS_id | ( | const StandardRepK & | s, |
RootNbr | alpha | ||
) | const |
|
inline |
|
inline |
|
inline |
level atlas::standardrepk::SRK_context::height | ( | const StandardRepK & | s | ) | const |
Returns the sum of absolute values of the scalar products of $(1+theta)$ and the positive coroots. This gives a Weyl group invariant limit on the size of the weights that will be needed.
Lower bound for height of representation after adding positive roots.
HechtSchmid atlas::standardrepk::SRK_context::HS_id | ( | const StandardRepK & | s, |
RootNbr | alpha | ||
) | const |
|
inline |
|
inline |
|
inline |
bool atlas::standardrepk::SRK_context::isFinal | ( | const StandardRepK & | sr, |
size_t & | witness | ||
) | const |
bool atlas::standardrepk::SRK_context::isNormal | ( | Weight | lambda, |
size_t | cn, | ||
size_t & | witness | ||
) | const |
|
inline |
bool atlas::standardrepk::SRK_context::isStandard | ( | const StandardRepK & | sr, |
size_t & | witness | ||
) | const |
bool atlas::standardrepk::SRK_context::isZero | ( | const StandardRepK & | sr, |
size_t & | witness | ||
) | const |
CharForm atlas::standardrepk::SRK_context::K_type_formula | ( | const StandardRepK & | sr, |
level | bound = ~0u |
||
) |
|
inline |
StandardRepK atlas::standardrepk::SRK_context::KGB_elt_rep | ( | KGBElt | z | ) | const |
|
private |
RawRep atlas::standardrepk::SRK_context::Levi_rep | ( | Weight | lambda, |
TitsElt | a, | ||
RankFlags | gens | ||
) | const |
|
inline |
void atlas::standardrepk::SRK_context::normalize | ( | StandardRepK & | sr | ) | const |
std::ostream & atlas::standardrepk::SRK_context::print | ( | std::ostream & | strm, |
const StandardRepK & | sr | ||
) | const |
std::ostream & atlas::standardrepk::SRK_context::print | ( | std::ostream & | strm, |
const Char & | ch | ||
) | const |
std::ostream & atlas::standardrepk::SRK_context::print | ( | std::ostream & | strm, |
const q_Char & | ch | ||
) | const |
q_Char atlas::standardrepk::SRK_context::q_HS_id_eq | ( | const StandardRepK & | s, |
RootNbr | alpha | ||
) | const |
q_CharForm atlas::standardrepk::SRK_context::q_K_type_formula | ( | const StandardRepK & | sr, |
level | bound = ~0u |
||
) |
|
private |
q_Char atlas::standardrepk::SRK_context::q_normalize_eq | ( | const StandardRepK & | sr, |
size_t | witness | ||
) | const |
q_Char atlas::standardrepk::SRK_context::q_reflect_eq | ( | const StandardRepK & | sr, |
size_t | i, | ||
Weight | lambda, | ||
const Weight & | cowt | ||
) | const |
|
inline |
StandardRepK atlas::standardrepk::SRK_context::std_rep | ( | const Weight & | two_lambda, |
TitsElt | a | ||
) | const |
|
inline |
KGBEltList atlas::standardrepk::SRK_context::sub_KGB | ( | const PSalgebra & | q | ) | const |
|
inline |
PSalgebra atlas::standardrepk::SRK_context::theta_stable_parabolic | ( | const StandardRepK & | sr, |
WeylWord & | conjugator | ||
) | const |
|
inline |
|
inline |
|
inline |
|
inline |
|
private |
|
private |
|
private |
|
private |
|
private |
|
private |
|
private |