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Fix a real reductive grou@(R).

Theorem]...Vogan, 1980s]: There isfanite algorithmto compute
the unitary dual ofG(R)

It is not clear this algorithm can be made explicit
It is notclear that it can be implemented on a computer
Atlas of Lie Groups and Representations

Take this idea seriously
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p-adic groups
Fix a p-adic groufG.
Question: Is there a finite algorithm to compute:
© The unitary dual of5?
@ The admissible dual d&?
© The discrete series @?
© The supercuspidal representationsGst

(So far the answer seems to be no...)
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R _ Admissible Dual ofG(R)
RecallG, c G, (admissible dual)

Today: an algorithm to compute tlaeimissibledual of G(R).

This is known (Langlands/Knapp/Zuckerman/Vogan). . . ry\hard
to compute.

Example How many irreducible representations does the split real
form of Eg have at infinitesimal character?

Answer. 526,471
(2,157 of them = .41% arenitary)
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Algorithm for the Admissible Dual oG (R)
More precisely we want to:

© Input an arbitrary complex reductive algebraic graaC)

@ Specify a real forrG(R) of G(C)

© Compute structure theory @ (R) (Cartan subgroups, Weyl
groups)

© Specify ablock B of irreducible representations Gf(R) (finite
set)

© Parametrizes
© Compute Kazhdan-Lusztig-Vogan polynomials for
@ Compute the unitary representationsin

Theat | as software does 1-6 (we're working on 7)
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Computing the Admissible Dual
Fix an infinitesimal character
(for now A = p, infinitesimal character of trivial representation)

I1(G, p) = irreducible admissible representations with infinitegim
charactenp
I1(G, p) is a finite set (Harish-Chandra).

More precise problemGive anexplicit, naturalparametrization of
(G, p)

1) explicit: a computable combinatorial set
2) natural make the Kazhdan-Lusztig-Vogan polynomials
computable
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Three pictures

Langlands classificationinduced from discrete series, characters of
Cartan subgroups

D-modules local systems oiK (C) orbits onG(C)/B(C)

L-homomorphismlocal systems on the space of admissible
homomorphism of the Weil group into the dual group

For now assumé& is simply connected, adjoint and Q@) = 1
(Examples:G = Gy, F4 or Eg)
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The Langlands Classification

Roughly parametrize representations by characters of Cartan
subgroups

(like the Ry (8)'s in Deligne-Lusztig’s theory for finite groups)
Definition:

C(GR), p) = {(HR), )}/ G(R)

H (R)=Cartan subgroup
x = character oH (R) withdy = p
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The Langlands Classification

(H([®), y) = I (H(R), y)=standard module (induced from discrete
series ofM (R))
— 7 (H(R), y) (unique irreducible quotient)

Theorem The map(H (R), y) — = (H(R), y) induces a canonical
bijection:

M(G(R), p) <= C(G, p)
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The Langlands Classification
This tells us what we need to compute
1) Conjugacy classes of Cartan subgroup&@R) (Kostanj
2) HR)/HR)o
3) W(G(R), H(R)) = Normg)(H (R))/H (R) c W (Knapp
In particular:

ITH(G(R), p)| = D IW/W(G(R), H(R))|[H(R)/H (R)|

H(®R)4,..., H(R), are representatives of the conjugacy classes of
Cartan subgroups.
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Example

G(R) = SL(2,R)

AR) = diag(x, ) = R*, [H([R)/H (R)°| = 2,
W(G[R), HR)) =W =7Z/2Z

_ cogd) sin@)\ _ B B
T= (— sin(9) cosg) ~SLIHR)/HR) =1,W=1

A T

——
2x1+1x2=4

SL (2, R) has 4 irreducible representations of infinitesimal chaiget
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Example G = SL(2, R), infinitesimal character &
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D-modules
B = G/B is theflag variety(complex projective variety)
K acts onB with finitely many orbits

Roughly Parametrize representations by orbits + local system en th
orbit

Definition:
D(G, K, p) = {(X, ©)}/K

X eB
x =local systenon O = K - x

= character of Stafx)/Stal(x)°
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Theorem (Vogan, Beilinson/Bernstein) There is a natural bijectio

M(G(R), p) € D(G, K, p)
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Example G = SL(2,C), G(R) = SL(2,R)
B is the sphere € U oo

K =8S0(2,C) =C*
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Example G = SL(2, C), G(R) = SL(2, R)
B is the sphere € U oo

K =S0(2,C)~C*

Ksz:w— Zw

Three orbits: north pole (0), south poleo], open orbit C*)
Isotropy group: 1,%,/27 — 4 representations
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L-homomorphisms
Weil groupWg = (C*, j) jzj =7 j2=-1

Roughly(Langlands): parametrize representations by mapginto
GY (complex dual group)

Definition:
L(G, p) ={(¢, 1)}/ G

¢ Wk — GY, (¢(C*) is semisimple, “infinitesimal charactgr’)
x =local systemon QY = GY - ¢
= character of Stafp)/Stal(¢)°
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Note: different real forms o6 all have the sam&" (no K here).
This version must take this into account (Vogastper packejs

Theorem There is a natural bijection

[[G®). p) ¢ L(G. p)

whereG1(R), ..., G,(R) are the real forms 06.
(this version: book by A/Barbasch/Vogan)
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Recapitulation
(1) Character Datéorbits of G(R) on Cartans):

M(G(R), p) <= C(G(R)) = {(H(R), 1)}/G(R)
(2) D-modules(orbits O of K on G/B):

M(G(R), p) <= D(G, K, p) = {(x, x)}/K

3 (orbits QY of G¥ on L-homomorphisms):

[T1G®). p) ¢ LG, p) = {(¢. 1)}/ G

i=1
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abelian group (two-group)
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In each case there is some geometric data, and a characténivé a
abelian group (two-group)

We'd rather talk aboubrbitsthancharacters ofZ/27Z)"
(Matching the three pictures: easy upxtp
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Drop they’s and getsetsof representations:

Definition: Orbit Q¥ of GY on L-homomorphisms- L-packet

I (G(R), Q)
(or []; L (G(R)i, ©))
Definition: Orbit O of K onG/B — R-packet

ITr(G(R), O)
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Theorem(Mogan): The intersection of dn-packetand anR-packets
at most one element.
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Theorem(Mogan): The intersection of dn-packetand anR-packetis
at most one element.

Corollary. IT(G(R), p) is parametrized by aubset of pairs

(K orbit onB, GY orbit on L-homomorphisms)
via

(0,QY) - Ir(G(R), O) NI (G(R), Q")

Which pairs?...
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K-orbits on the dual side
Something remarkable happens:

G orbits of L-homomorphisms arxactlythe same thing ak
orbits onG/B on the dual side

..., Ky = complexified maximal compacts of real forms®f .
Bv — GV/BV
Proposition: There is a natural bijection:

n
£ & [IK\BY

i=1
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Symmetric Picture
Corollary. TI(G(R), p) is parametrized by aubset of pairs
(K orbit onB, K" orbit on5")
Note This symmetry is/ogan Duality

This reduces the problem to:

| ParametrizeK orbits on3 = G/B |
(applied toG andGY)




K orbits on G/B
Definition:
X = {x e Normg(H) | x? = 1}/H



Three views of the Admissible Dual
The Langlands Classification
‘D-modules

K orbits on G/B

The Algorithm

K orbits on G/B

Definition:

X = {x e Normg(H) | x? = 1}/H

(Finite set; maps t¥\, = involutions in W)



Three views of the Admissible Dual

Overview The Langlands Classification
Admissible Dual ‘D-modules
Unipotent Representations and the Futurr K orbits on G/B
The Algorithm

K orbits on G/B
Definition:
X = {x € Normg(H) | x*> = 1}/H
(Finite set; maps toV, = involutions in W)

Proposition There is a natural bijection

x &S KB
i

(union over real forms, correspondifgy, . .., K;)
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Sketch of Proof
P ={(x, B)}/G (x* =1, B =Borel)

LIi Ki\B X
Fix representatives, ..., X, of X'/ G (i.e. real forms)
Fix B> H
(1) Everyx is conjugate to somg:
(X, B) ~¢ (xi, B)  {(xi, B)} = Ki\B
(2) Every B is conjugate tdBy:
(X, B) ~¢ (X', Bp) > X' € X (wlogx’ € Norm(H))
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K\G/B for Sp(4, R) andSO(3, 2):

Sp(4, R):

~
N o

oA

NN AN
cCoocOodHANNN®

OCOoOO0OONN——HNNM

OO x x x x x O x x x
—

2301457698m

1023896745m

mt&&m&&r&&m

SO(3, 2):
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Structure of G
X gives structure o6G: real forms, Cartan subgroups, Weyl groups

(assumeG is adjoint, inner class of compact group)

Proposition

1) Real forms ofG &L X1/ W (X;=fiber over 1e W)
2) Cartan subgroups in all real form&:/W
3) W(G(R), H(R)) = Stahw(X)
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The Parameter Space
X eX— Oy =int(X) > Oxn = Ol
By symmetry define¥V, XV sy —» Oy nv
Definition:

Z={(Xxy)| € X x X0} =—Oyuv)

Zc[JKi\Bx [ Ky\B
i j
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The Parameter Spacg
Theorem There is a natural bijection:

z & [[nG®y, p)

i=1

RecallZ = {(x, )}

x € X = {x e Normg(H) | x? = 1}/H
y € XV = same thing on dual side

(Canonical up to characters 6s(R)/Ggs(R)?, Gys(R)/ Gys(R)?)



General Groups



Three views of the Admissible Dual
The Langlands Classification
‘D-modules

K orbits on G/B

The Algorithm

General Groups
For simplicity we assumed (recal = G(C)):

© G is simply connected
@ G is adjoint
Q Oout(G) =1



Three views of the Admissible Dual

Overview The Langlands Classification
Admissible Dual ‘D-modules
Unipotent Representations and the Futurr K orbits on G/B
The Algorithm

General Groups
For simplicity we assumed (recall = G(C)):

© G is simply connected

@ G is adjoint
Q OutG) =1
In general:

© Fix aninner classof real forms

@ Need twistsG! =G xI', GY x I' (I' = Gal(C/R))
© Requirex? e Z(G) (notx? = 1)

© Need several infinitesimal characters

© Needstrong real forms
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The General Algorithm
X = {x e Normgr\g(H) | X* € Z(G)}/H
XY similarly, Z = {(x,y)|...} € X x X" as before.

Theorem: There is a natural bijection

z &S [[nG®YL A)
ieS

A = certain set of infinitesimal characters
Sis the set of &trong real form’s

ReferenceAlgorithms for Representation Theory of Real Reductive
Groups preprint gfww. | i egr oups. or g), Fokko du Cloux, A
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Cayley Transforms and Cross Actions

Two natural ways of constructing new representations fréan o
(Mogan): Cayley transforms and cross action

In our picture:
1) W acts by conjugation oA” and Z: cross action

2w e W, S, = w$,,

w—=w=sweW

lifts to

X = X =og,X

(Multivalued due to choice of,: X" or {X], X5})
This is theCayley transform
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P— Zolof
= @’g =
Bife oot
BoIo! =&
G @ TG @Zg’

= e Sea—c=-
& @E@%@ OIOIOICINOIO]
O
&

AN =7
QRO D) )
&@"ﬁ‘é‘é’"“ =

s e

K\G/B for SO(5, 5)
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PGL(2,C):

X = {l,diag(-1, -1, 1), w} —
K (C) orbits onG(C)/B(C): {C*, oo}, {-}

SL(2,C): X = {1, +diag(i, —i), w} —
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Example: SL(2)/PGL(2)
PGL(2,C):

X = {l,diag(-1, -1, 1), w} —
K (C) orbits onG(C)/B(C): {C*, oo}, {-}

SL(2,C): X = {1, +diag(i, —i), w} —

K (C) orbits onG(C)/B(C): {C*, 00, O}, {-}, {-}



Three views of the Admissible Dual

Overview The Langlands Classification
Admissible Dual

‘D-modules

Unipotent Representations and the Futurr K orbits on G/B

The Algorithm
Example: SL(2)/PGL(2)

19) x | x2 | K Gx@R) | 2 | rep | OV |y | y2 | KV GY®) | 4 | rep

| | G sueo | p | C Cc* w || 0@,C) | so@y | 2p | PSy

A G u©02 | p | C C* w || 0,0 | soRy | 2p | PS
{0} t -l C* U@Ly | p | bsy | C* w | | 0(2,C) | so@y | p C
{oo} | -t | -l c* su@w1y | p | bs— | C* w || 0(2,C) | S0 | p sgn
C* w | -l C* suwy | p | C {oo} | t | 0,0 | sSO0RL | p DS
CX w | 0(2,C) SU(1L, 1) P PS | | GY SO(3) P C
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SL(2)/PGL(2) via atlas output

main: type

Lie type: Al sc s

mai n: bl ock

(weak) real forms are:

0: su(2)

1: sl(2,R

enter your choice: 1

possi bl e (weak) dual real forns are:

0: su(2)

1 sl(2,R

enter your choice: 1

entering block construction ...

2

done

Nanme an output file (return for stdout, ? to abandon):

0(0,1): 1 (2,+) [i1] o

1(1,1): 0 (2,+) [i1] o
1

2(2,0: 2 (*,%)  [r1] 1
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nain: type

Lie type: C sc s
nmai n: bl ock
(weak) real
0: sp(2)

1: sp(1,1)

2: sp(4,R

enter your choice: 2
possi bl e (weak) dual
0: so(5)

1: so(4,1)

2: so(2,3)

enter your choice: 2

forms are:

real

forms

entering block construction ...

10

done

Name an output file (return for
o( 0,6): 1 2 (6, *)
1( 1,6): 0 3 (6, *)
2( 2,6): 2 0 (%, *)
3( 3,6): 3 1 (* *)
4( 4,4): 8 4 (* %)
5( 5,4): 9 5 (*, %)
6( 6,5): 6 7 (* %)
7( 7,2): 7 6 (10 11)
8( 8,3): 4 9 (*, *)
9( 9,3): 5 8 ( *, *)
10(10,0): 11 10 (* %)
11(10,1): 10 11 (* %)

Example:Sp(4, R)

are:

stdout, ? to abandon):

4, x) [i1,i1] ©

5, *) [i1,i1] O

4, x) [ic,il] ©

5, *) [ic,il] ©

*, %) [C+rl] 1 2

*, %) [C+rl] 1 2

*, x) [r1,C+] 1 1

*, x) [i2,CG] 2 2,1,2
10, *) [C,i1] 2 1,2,1
10, *) [C,i1] 2 1,2,1
*, %) [r2,r1] 3 1,2,1,2
*, ®) [r2,rn] 3 1,2,1,2
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Example:Eg

real: type
Lie type: E8 sc s
mai n: bl ocksi zes
conmpact quaternionic split

conpact 0 0 1
gquaternionic O 3,150 73, 410
split 1 73, 410 453, 060
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Unipotent Representations
Proposition From the output okt | as one can list the special
unipotent representations associated to a given nilpoirditt

Sketch
*) Fixablock B (bl ock)

*) Fix nilpotent orbitO for g¥. LetS= {i4, ..., i;} be the nodes of
Dynkin diagram labelled 2. Let = corresponding infinitesimal
character.
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Unipotent Representations

1) O — o (special representation &¥)
2) Find all cellsC c B
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Unipotent Representations

1) © — o (special representation ¥¥)

2)Find allcellsC c B (wcel | s)

3) List cellsC containing the special representatidor® sgn

(wgr aph + calculation with character table @¥)

4) Foreach suck listz €e Cwithz(z) =S (bl ock)

5) Push these té

David Vogan has carried this out fédg

(70 nilpotent orbits; 20 even ones; 143 unipotent repredgems with
integral infinitesimal character fdgg(split))

Conjecture(Arthur): These representations are unitary.
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bl ock dual to split group:
length Cartan

Rep (x,y)

133 (133, 320205)
140 (140, 320204)
42248 ( 40972, 306175)
82083 ( 77494, 287709)
124391( 114466, 263402)
124432( 114507, 263398)
132306( 120375, 257307)
191385( 168884, 220459)
198367( 172894, 213960)
205069( 179284, 210683)
225144( 192668, 195053)
233376( 200324, 190190)
233395(200343, 190188)
237240( 201594, 186548)
243756( 206740, 180794)
244076( 207060, 180688)
252552( 212118, 174728)
258013( 216823, 170023)
258048( 216858, 170012)
288684( 238673, 147429)
309166( 250360, 129909)
320784( 257336, 120344)

453058(320205, 133)

16

64

bl ock dual to conpact group:

o (o, 320205)

0

BBANWWRWWONNUNBAMRWNNOOWREO

©

roots
[i1,id,id,i1,i1,i1,i1,i1]
[i1,i1,i1,i1,i1,i1,CHri]

[C+ i1, C+ i1, C+ CH CHC]
[CG,C+rn,C+rn, CHrn, CH
[i1,Cil,il,C+CHC,i1]
[i1,i1,C+ C+,C,i1,CHi1
[C+ C+il,il,C+ C+,C, CH
[i1,i1,i1,i1,i1,il,i1,C]
[C, C+, C+, C+, C+, C+, C+, CH]
[r1,i1,C+i1,i1,il,i1,C]
[il,rn,il,C+ rn,Ctrn, C]
[C,i1,C+ C,CHCHC,CH
[C,C+i1,il1,i1,C,CH CH]
[rn, G, Ct+, C+, C+, Ct+, C+, Ct]
[C+ i1, C+ C+, C,CH i1, CH
[C+, C+, C+, G, CH CH, CH C]
[ C+, C+, C+, C+, G, C+, C+, Ct]
[C+ C+ C+il1,i1,il,C,CH
[C+il,i2,C+ C,CHiL CH
[C+i1,i1,i1,i1,C,CHi1]
[C+, C, C+, C+, C+ C+H CH C]
[C+, C+, C+, i 2,C, C+, C+, CH]

[r2,r2,r2,r2,r2,r2,r2,r2]

[ic,ic,ic,ic,ic,ic,ic,ic]
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What next?

Putini

K-structure of representations

Singular and non-integral infinitesimal character
Unipotent Representations (Arthur’s conjecture)
Version 1.0 of the software

Some results on (non)-unitary representations
The Unitary Dual??
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