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G=real reductive grou (e.g.GL(n, R), Sp(2n, R), SO(p, q)...)
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G=real reductive grouf (e.g.GL(n, R), Sp(2n, R), SO(p, 9)...)
Unitary dual of G {irreducible unitary representations o}/



Atlas Project
Two Preliminary Projects
Algorithm for the Admissible Dual Overview
KLV polynomials
The Future

G=real reductive grou (e.g.GL(n, R), Sp(2n, R), SO(p, q)...)
Unitary dual of G {irreducible unitary representations o}/

Problem:Give a description of the unitary dual of real group G
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G=real reductive grou (e.g.GL(n, R), Sp(2n, R), SO(p, q)...)
Unitary dual of G {irreducible unitary representations o}/
Problem:Give a description of the unitary dual of real group G
Example G compact - Weyl (1920s)

Example SL(2, R) - Bargmann (1947)

Example G = GL(n, R) - Vogan (1986)



Overview

Known Unitary Duals
red: known black: not known
Type A: SL(n, R), SL(n, H), SU(n, 1), SU(n, 2), SL(n, C)
SU(p,a) (p,a > 2)
Type B SO(2n, 1), SO(2n+ 1, 2), SO(2n + 1, C)
SO(p.q) (P, = 3)
Type C Sp(4, R), Sp(n, 1), Sp(2n, C)
Sp(p,a) (p.q > 2)
Type D SO(2n + 1, 1), SO(2n, 2), SO(2n, C)
SO(p, @) (p,q > 3), SO*(2) (n > 4)
Type Eg: Eg(F4) = SL(3, Cayley
Eg(Hermitian), Eg(split), Eg(quaternionig, Eg(C)
Type Fa: F4(Ba)
F4(split), F4(C)
TypeGy: Gao(split), Go(C)
E7/Eg: nothing known



Theorem [...Vogan, 1980s]Fix G. There is dinite algorithmto
compute theinitary dualof G
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Theorem [...Vogan, 1980s]Fix G. There is dinite algorithmto
compute theunitary dualof G

It is not clear this algorithm can be made explicit
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Theorem [...Vogan, 1980s]Fix G. There is dinite algorithmto
compute theinitary dualof G

It is not clear this algorithm can be made explicit
It is notclear that it can be implemented on a computer
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Theorem [...Vogan, 1980s]Fix G. There is dinite algorithmto
compute theinitary dualof G

It is not clear this algorithm can be made explicit
It is notclear that it can be implemented on a computer
Atlas of Lie Groups and Representations
Take this idea seriously
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Goals of the Atlas Project
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and researchers
@ Tools for non-specialiste’ho apply Lie groups in other areas
@ Tools for studyingother problems in Lie groups
@ Deepen our understanding of the mathematics
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Goals of the Atlas Project
Tools for educationteaching Lie groups to graduate students
and researchers
Tools for non-specialista’ho apply Lie groups in other areas
Tools for studyingother problems in Lie groups
Deepen our understanding of the mathematics
Compute the unitary dual
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Explicitly computing the admissible dual

KLV polynomials and theeg calculation
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Positive Semidefinite Matrices
Spherical Unitary Dual

Project 1: Constructing Representations of a finite grGup

Representation theory of G is “completely” determined By it
character table.
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Project 1: Constructing Representations of a finite gréup
Representation theory of G is “completely” determined By it
character table.

Problem Given a finite groupgs and a row in the character table,
write down matrices giving this representation.
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Project 1: Constructing Representations of a finite grGup

Representation theory of G is “completely” determined By it
character table.

Problem Given a finite groupgs and a row in the character table,
write down matrices giving this representation.

Example The character table of every Weyl group W is known.



W=Weyl group, simple reflectiorns, ..., s
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W=Weyl group, simple reflectiors, ..., s,

Problem Given a row in the character table @, first entry N, give
n N x N matrices such that(s) = A
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W=Weyl group, simple reflectiors, ..., s,

Problem Given a row in the character table @, first entry N, give
n N x N matrices such that(s) = A

(Check defining relations d& and the traces)



Atlas Project
Two Preliminary Projects Constructing Representations of Weyl Groups

Algorithm for the Admissible Dual Positive Semidefinite Matrices
KLV polynomials Spherical Unitary Dual
The Future

W=Weyl group, simple reflectiors, ..., s,

Problem Given a row in the character table @, first entry N, give
n N x N matrices such that(s) = A

(Check defining relations d& and the traces)

Fact: can use matrices withtegralentries (Springer correspondence)



Algorithm for the Admissible Dual

Atlas Project

Two Preliminary Projects Constructing Representations of Weyl Groups
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The Future
Character table oWV (Esg)
Class | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size | 1 1 120 120 3150 3780 3780 37800 37800 113400 2240 4480 89600 268800 15120
Order | 1 2 2 2 2 2 2 2 2 2 3 3 3 3 4
X1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 + 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 1 1
X.3 + 8 -8 -6 6 0 4 -4 2 -2 0 5 -4 -1 2 0
X 4 + 8 -8 6 -6 0 4 -4 -2 2 0 5 -4 -1 2 0
X.5 + 28 28 14 14 -4 4 4 -2 -2 -4 10 10 1 1 4
X. 6 + 28 28 -14 -14 -4 4 4 2 2 -4 10 10 1 1 4
X7 + 35 35 21 21 3 11 11 5 5 3 14 5 -1 2 -5
X. 8 + 35 35 -21 -21 3 11 11 -5 -5 3 14 5 -1 2 -5
X.9 + 50 50 20 20 18 10 10 4 4 2 5 5 -4 5 10
X. 100 + 4200 4200 0 0 104 40 40 0 0 8 -120 15 -12 6 -40
X. 101 + 4200 4200 420 420 -24 40 40 4 4 8 -30 -30 15 -3 40
X. 102 + 4480 4480 0 0 -128 0 0 0 0 0 -80 -44 -20 4 64
X. 103 + 4536 -4536 -378 378 0 60 -60 30 -30 0 -81 0 0 0 0
X. 104 + 4536 -4536 378 -378 0 60 -60 -30 30 0 -81 0 0 0 0
X. 105 + 4536 4536 0 o -72 -72 -72 0 0 24 0 81 0 0 -24
X.106 + 5600 -5600 0 0 0 -80 80 0 0 0 -10 -100 2 -4 0
X. 107 + 5600 -5600 -280 280 0 -80 80 8 -8 0 20 20 11 2 0
X.108 + 5600 -5600 280 -280 0 -80 80 -8 8 0 20 20 11 2 0
X.109 + 5670 5670 0 0 -90 -90 -90 0 0 6 0 -81 0 0 6
X.110 + 6075 6075 405 405 27 -45 -45 -27 -27 -21 0 0 0 0 -45
X. 111 + 6075 6075 -405 -405 27 -45 -45 27 27 -21 0 0 0 0 -45
X. 112 + 7168 -7168 0 0 0 0 0 0 0 0 -128 16 -32 -8 0



Constructing Representations of Weyl Groups

Positive Semidefinite Matrices

Spherical Unitary Dual
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Algorithm for the Admissible Dual

Example: one matrix from a 30-dimensional representatiow 0Eg)
1/2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1/4,0,0,0,0,0,0

o,-1/8,0,0,0,-15/8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3/8,0,0,

0,0,-1/8,0,0,0,-15/8,

0

- e~ ,000000000000,0,0,4,51,0,0,0,

< . . L O00000C00CO00O000CO00OYOOGO
e e _000000000000,0,0,4,30,0,0,0,

[eleoNoloNoloNeNo) MOOOOO0OOOO

0
0
0
0
0
0
0
0
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Decompose tensor produdaitthe reflection representation (meataxe)
A integral models: throughV(E7), some forW (Eg)
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Constructing Representations

Obvious algorithm decompose a larger representation (like the
regular representation)

Problem W(Eg)
dim(regular representation)=696,729,600
multiplicity of largest irreducible is 7,168

Decompose tensor produdaitthe reflection representation (meataxe)
A integral models: throughV(E7), some forW (Eg)

Constructr by constructing itgestriction to a subgroymnd building
up.

John StembridgeQ-models including/V (Eg)

(for W(Eg), LCD(denominators)594)
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Problem M =n x n rational symmetric matrix. I8/ positive
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Problem M =n x n rational symmetric matrix. I8/ positive
semidefinite?

Positive semidefinite:
1) (v,v) = oMo' > 0forallo
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Project 2: Testing positive semidefinitness
« irreducible admissible representation®f
Is z unitary?. ..

Problem M =n x n rational symmetric matrix. I8/ positive
semidefinite?

Positive semidefinite:
1) (v,v) = oMo' > 0forallo
2) or all eigenvalues are 0
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Project 2: Testing positive semidefinitness
« irreducible admissible representation®f
Is z unitary?. ..

Problem M =n x n rational symmetric matrix. I8/ positive
semidefinite?

Positive semidefinite:

1) (v,v) = oMo' > 0forallo

2) or all eigenvalues are 0

3) or det(all principal minors} 0 (2" of them)



What is wrong with computers

1 2
M=(2 3 4
3 47
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1 2
M=1{|2 3 4
3 47

Eigenvalues (Mathematica):
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What is wrong with computers

1 2
M=[2 3 4
3 4 7
Eigenvalues (Mathematica):
u, 2353 . (5 (241+9i /3—4))%

3(241+9i\/§1)% ’
" 2353 (1+iv3)  (1-iv3) (5 (241+0i m))%
E - 6

6 (241+ 9i «/3’4) 3

1 2353 (1-iv3)  (1+iv3) (5(241+9im))%
B 6

6 (241+ 9i /3_4) 3
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What is wrong with computers

1 2
M=1[2 3 4
3 47
Eigenvalues (Mathematica):
%l+ 2353 : . (s (241+zi /3_4))%

3(241+ 9 v34)

" 2353 (1+iv3)  (2-iv3) (5(241+9i\/§1))%
E - 6

6 (241+ 9i «/3’4) 3

1 2353 (1-iv3)  (1+iv3) (5(241+9im))%
3 6

6 (241+ 9i /3_4) 3

={10.79+ 0.i, —0.34+ 4.44 x 10716, 0.54 — 4.44 x 1076}}



Constructing Representations of Weyl Groups
Positive Semidefinite Matrices
Spherical Unitary Dual

Testing positive semidefinitness
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o (M) = (p, z, Q) number of (positive, zero, negative) eigenvalues
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fum (X)= characteristic polynomial
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fum (X)= characteristic polynomial
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Testing positive semidefinitness
M n x n symmetric, rational
o (M) = (p, z, Q) number of (positive, zero, negative) eigenvalues

fm (X)= characteristic polynomial
fu(X) =ag+aix+..., an_lxn—l + apx"
v :(a(),,an) (a{ ER)
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Testing positive semidefinitness
M n x n symmetric, rational
o (M) = (p, z, Q) number of (positive, zero, negative) eigenvalues

fm (X)= characteristic polynomial
fu(X) =ag+aix+..., an_lxn—l + apx"
v :(a059an) (a{ ER)

o) =(p,z0q):

p = number of sign changeé:..&,0,...,0,3;...) (aa; <0)
z = number of zeroes at the beginning

g = number of sign changes usirig (—x)



Atlas Project
Two Preliminary Projects Constructing Representations of Weyl Groups

Algorithm for the Admissible Dual Positive Semidefinite Matrices
KLV polynomials Spherical Unitary Dual
The Future

Testing positive semidefinitness
M n x n symmetric, rational

o (M) = (p, z, g) number of (positive, zero, negative) eigenvalues
fm (X)= characteristic polynomial

fm(X) = ao + arX 4 ..., 8qg_1X" 1 + ax"

v=(a,...,an) (& €R)

o(v) =(p,z Q)

p = number of sign changeé:..&,0,...,0,3;...) (aa; <0)
z = number of zeroes at the beginning

g = number of sign changes usirig (—x)

Lemma(Descartes’ rule of signs)

o (M) = o (fw)
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Spherical Unitary Dual

David Saunders, Zhendong WébDelaware), A:
Compute the characteristic polynomiabd p+ Chinese Remainder
Theorem— computes (M)
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David Saunders, Zhendong WébDelaware), A:
Compute the characteristic polynomiabd p+ Chinese Remainder
Theorem— computes (M)

Resultg(size of entries< 2")

n time

200 1 minute

1,000 3 hours

7,168 1 cpu year (projected)
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David Saunders, Zhendong WébDelaware), A:
Compute the characteristic polynomiabd p+ Chinese Remainder
Theorem— computes (M)

Resultg(size of entries< 2")
n time
200 1 minute

1,000 3 hours
7,168 1 cpu year (projected)

Note: Embarassingly parallelizable
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Spherical Unitary Dual

What is wrong with computers |l
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Spherical Unitary Dual
What is wrong with computers |l
[ sin*(x) cog(x) dx = [Mathematical]:
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Spherical Unitary Dual
What is wrong with computers I

[ sin'f(x) cog(x) dx = [Mathematica]:

21 . 15 15 |
=17 sin(x) — =17 sin(3x) + =17 sin(35x)

5
————sin(7x) +

1024 11264 +C
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Spherical Unitary dual

G=classical real or split p-adic group
Gspn = spherical unitary dualirreducible unitary representations
containing aK -fixed vector.
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Spherical Unitary dual

G=classical real or split p-adic group
Gspn = spherical unitary dualirreducible unitary representations
containing aK -fixed vector.

Subset oR((C)* (reduces tRI(R)* ~ R")
Dan Barbaschbeautiful conceptual description Gspn (in terms of
geometry on the dual side)
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Spherical Unitary dual

G=classical real or split p-adic group
Gspn = spherical unitary dualirreducible unitary representations
containing aK -fixed vector.

Subset oR((C)* (reduces tRI(R)* ~ R")
Dan Barbaschbeautiful conceptual description Gspn (in terms of
geometry on the dual side)

Barbasch/Ciubotaru: Also results for exceptional growpsifirmed
by atlascomputations
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Spherical Unitary dual via atlas
G: split, p-adic
Atlas: computes thepherical unitary du£sph
ExampleG=G,

(0,0, 0)
(-3/8,-3/8,3/4)
(-1/4,-1/2, 3/ 4)
(-1/6, -5/ 12, 7/ 12)
(-1/2,-1/2, 1)
(-1,-2,3)
(0,-1, 1)
(-1/3,-1/3, 2/ 3)
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Example: Hyperplanes in(R)* for G,
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Example: Spherical unitary dual &, (Vogan, Barbasch, Atlas)



Unitary Dual
Other Duals

Unitary Dual
G =real reductive group
for exampleGL (n, R), Sp(2n, R), Spin(p, q), Eg(split),...)



Atlas Project
Two Preliminary Projects

5 = Unitary Dual
Algorithm for the Admissible Dual
KLV polynomials ey PUELS
The Future
Unitary Dual

G = real reductive group
for exampleGL (n, R), Sp(2n, R), Spin(p, q), Eg(split),...)

Representatian(z, H) of G on a Hilbert spacét (continuous)
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Unitary: (z (Q)v, 7 (Q)v") = (v,0’) (v,0' € H,g € G)
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Unitary Dual

G = real reductive group
for exampleGL (n, R), Sp(2n, R), Spin(p, q), Eg(split),...)

Representatian(z, H) of G on a Hilbert spacét (continuous)

Unitary: (z (gQ)v, 7 (Q)v") = (v,v) (v,0' € H,g € G)

G, = {irreducible unitary representations 6/ ~

(unitary equivalence)



Unitary Dual
Other Duals

Admissible Dual
K=maximal compact subgroup &
Admissible Representationlim Homk (o, H) < oo (all ¢)



Atlas Project

Two Preliminary Projects
Algorithm for the Admissible Dual
KLV polynomials

The Future

Unitary Dual
Other Duals

Admissible Dual
K=maximal compact subgroup &
Admissible Representatioim Homk (o, H) < oo (all o)

G. = { irreducible admissible representations@jf/ ~
(infinitesimal equivalence)



Atlas Project

Two Preliminary Projects
Algorithm for the Admissible Dual
KLV polynomials

The Future

Unitary Dual
Other Duals

Admissible Dual
K=maximal compact subgroup &
Admissible Representatioim Homy (o, H) < oo (all o)
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Admissible Dual
K=maximal compact subgroup &
Admissible Representatioim Homy (o, H) < oo (all o)

G. = { irreducible admissible representations@jf/ ~
(infinitesimal equivalence)

Equivalently

Definition: A (g, K)-module is avector spacé/, with compatible
representations gf andK.
G, = {irreducible admissiblég, K)-moduleg/ ~

Gu c Ga
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Other Duals

Tempered DuaG;: support of Plancherel measure, giving regular
representation.?(G)

Discrete Serie§y: occuring as direct summands of(G)

: (g, K)-modules preserving a Hermitian form
(not necessarily positive definite)
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Gic G cG,cG,cG,
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For each representation in, — ét, test whether the unique invariant
Hermitian form is positive definite.

Not clear a finite algorithm for this foreven for a singler
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Unitary Dual
Other Duals

Tempered/Unitary/Hermitian/Admissible

Gg, Gi: known (Harish-Chandra)
Ga: known (Langlands/Knapp-Zuckerman/Vogan)
: known (Knapp-Zuckerman)

To computeG,:

For each representation in, — @t, test whether the unique invariant
Hermitian form is positive definite.

Not clear a finite algorithm for this foreven for a singler

Uncountably manyt to test
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Unitary Dual
Other Duals

Example G = SL(2, R), V = L?(R)
Family of (spherical) representatioparametrized by € C

7,(9) f(x) = | —bx +d|™ f ((ax — ¢)/(—bx + d))
_(a b
9=\¢ d
Irreduciblefor v # £+1, +3, ...

Unitaryforv eiRand—1<v <1
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Unitary Dual
Other Duals

Example G = SL(2, R), V = L?(R)
Family of (spherical) representatioparametrized by € C

7,(9) f(X) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

_(a b
9=\¢ d
Irreduciblefor v # £+1, +3, ...

Unitaryforv eiRand—1<v <1

Note (, )isnotthe usualoneforl<v <1 v #0
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form of Eg have at infinitesimal character?
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First step: R
Problem Explicitly computeG,

Known by Langlands, Knapp/Zuckerman, Vogan

Example How many irreducible representations does the split real
form of Eg have at infinitesimal character?

Answer. 526,471
(2,157 of them = .41% arenitary)
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I1(G, p) = irreducible admissible representations with infinitesim
characterp (same as the trivial representation)
Finite set(Harish-Chandra).
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I1(G, p) = irreducible admissible representations with infinitesim
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More precise problemGive anexplicit, naturalparametrization of
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Unitary Dual
Other Duals

Computing the Admissible Dual
I1(G, p) = irreducible admissible representations with infinitesim
characterp (same as the trivial representation)
Finite set(Harish-Chandra).

More precise problemGive anexplicit, naturalparametrization of
(G, p)

1) explicit: a computable combinatorial set
2) natural make the Kazhdan-Lusztig-Vogan polynomials
computable
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_\

Fokko du Cloux
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What Fokko did

Abstract Mathematics — Algorithm —  Software
Lie Groups Combinatorial Set C++ code
Representation Theory

Mathematical Structures Data Structures

Mathematics Computer output
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G = G(C)=arbitrarycomplex, connected, reductive algebraic group
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(Corresponds t&(R), K (R) = G(R)? = maximal compact
subgroup)
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Basic Data

G = G(C)=arbitrarycomplex, connected, reductive algebraic group
[Data structure(root data) pair ofn x n integral matricesm=rank,
n=semisimple rank]

6 = involution of G, K = GY

(Corresponds t&(R), K (R) = G(R)? = maximal compact
subgroup)

For now assumé& is simply connected, adjoint and Q@) = 1
(Examples:G = G, F4 or Eg)
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G = G(C), involutiond, K = G’
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G = G(C), involutiond, K = G’
B = G/B = Schubert variety, complex projective variety

Fact: K acts onB5 with finitely many orbits

| Problem: Parametrize K-orbits on G/B
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Properties oft’:
1) Finite set, explicitly computable
2) Action of W
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ParametrizingK \G/B

Definition: X = {x € Normg(H) |x? = 1}/H

Properties ofY’:

1) Finite set, explicitly computable

2) Action of W

3) W-equivariant mapt’ — W, (involutions inW)

(Similar to classifying involutions iWV)

Theorem There is a natural bijection

X S i
i

(union over real forms, correspondifgy, . .., K;)
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Unitary Dual
Other Duals

The Parameter Space
G — GY =dual (complex) group

Amazing fact: parametrizingl (G, 1) amounts to parametrizing
K\G/B andKY\G"/B".

Theorem (A/du Cloux) There is a natural bijection:

z &S [[nG®y, 2)
i=1

(union over real forms o6)
Z = certain subset of

X x XY =]]K\Bx[]K\B"
i j
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December 20, 1954 - November 10, 2006
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Ma_r_c van Leeuwen David Vogan
Poitiers

LiE software MIT
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Kazhdan-Lusztig-Vogan Polynomials
G = G(0), K = K(C), G(R), infinitesimal charactep

Z =finite set of parameters y = (X, y)
y — | (y)=standard module
y — = (y) =irreducible representation
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Kazhdan-Lusztig-Vogan Polynomials
G = G(0), K = K(C), G(R), infinitesimal charactep

Z =finite set of parameters y = (X, y)
y — | (y)=standard module
y — = (y) =irreducible representation

M=ZLx(y)) (€2
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Kazhdan-Lusztig-Vogan Polynomials
G = G(0), K = K(C), G(R), infinitesimal charactep

Z =finite set of parameters y = (X, y)
y — | (y)=standard module
y — = (y) =irreducible representation

M=Zx(y)) (€2
Proposition(Langlands, Zuckerman)M = Z{l (y)) (y € 2)
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Kazhdan-Lusztig-Vogan Polynomials
Change of Basis Matrices:

1(0) = 2sez My, )7 (y)

T(0) =2 5ez M7, 0)1 (7)

ComputeM(y, d), m(y, d): Kazhdan-Lusztig-Vogan polynomials
P,s=a+aq+---+anq"
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Kazhdan-Lusztig-Vogan Polynomials
Change of Basis Matrices:

1(0) =2 5ezM(y, ) (y)
T(0) =2 5ez M7, 0)1 (7)
ComputeM(y, d), m(y, 0): Kazhdan-Lusztig-Vogan polynomials

Pys=a0+a0+ - +aq"

M(y,0) = (=1)'7"OP, 5(1)
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original KL polynomials KLV polynomials
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KL and KLV polynomials

original KL polynomials KLV polynomials

Underlying set W Z

Data B-orbits onG/B K-orbits onG/B
+ local system

Rep. Theory Verma modules Representation& @R)
(block B)

Properties 8 >0a=1 a >0,a=0o0r(?)
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KL and KLV polynomials

original KL polynomials KLV polynomials

Underlying set W Z

Data B-orbits onG/B K-orbits onG/B
+ local system

Rep. Theory Verma modules Representation& @R)
(block B)

Properties a >0,ag=1 a >0,8=0o0rX(?)

KLcKLV G[R) = G'(C)
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Overview
Definition

The Eg calculation
Final Result

KL and KLV polynomials

original KL polynomials KLV polynomials

Underlying set W Z
Data B-orbits onG/B K-orbits onG/B
+ local system
Rep. Theory Verma modules Representation& @R)
(block B)
Properties a >0,ag=1 a >0,8=0o0rX(?)
KLcKLV G[R) =G'(C)

Note: David Vogan calls the polynomials f&(R) Kazhdan-Lusztig
(not Kazhdan-Lusztig-Voggrpolynomials
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Recursive Definition of KLV polynomials
Data
1) (W, S) Weyl group, simple roots
2) Finite setZ parametrizing representations GfRR)
3) Length functior? : Z — Z.o
4) y — classification of simple roots C+,C-,rn,r1,r2,ic,il,&t( as
output)
1303(952, 31): 13 7[i2,C-r2,C-i1] 1303 1250 1304...
5) Action of W:a (simple),y — s,ys;t
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1) (W, S) Weyl group, simple roots
2) Finite setZ parametrizing representations GfRR)
3) Length functior? : Z — Z.o
4) y — classification of simple roots C+,C-,rn,r1,r2,ic,il,&t( as
output)
1303(952, 31): 13 7[i2,C-r2,C-i1] 1303 1250 1304...
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Recursive Definition of KLV polynomials
Data
1) (W, S) Weyl group, simple roots
2) Finite setZ parametrizing representations GfRR)
3) Length functior? : Z — Z.o
4) y — classification of simple roots C+,C-,rn,r1,r2,ic,il,&t( as
output)
1303(952, 31): 13 7[i2,C-r2,C-i1] 1303 1250 1304...
5) Action of W:a (simple),y — s,ys;t
6) Left action ofsomes,: s,y =y, or{y,", v, }
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Recursive Definition of KLV polynomials
Length ordery < dif y =dorf(y) < €(9)
(Bruhat order isnot needed)

Matrix is triangular: P, s = 0 unlessf(y ) < £(J)
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Recursive Definition of KLV polynomials
Length ordery < dif y =doré(y) < £(o)
(Bruhat order ishot needed)

Matrix is triangular: P, s = 0 unless{(y ) < £(9)

u(y,0) = coefficient ofgqz‘@—(@)=1 in P, s
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Recursive Definition of KLV polynomials
Length ordery < dif y =doré(y) < £(o)
(Bruhat order ishot needed)

Matrix is triangular: P, s = 0 unless{(y ) < £(9)

u(y,0) = coefficient ofgqz‘@—(@)=1 in P, s

vo= Dl OP,

y <¢<d
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Recursive Definition of KLV polynomials

-1
Py s, =07 Py xp6, + Pro, —U

a W.rt.o a W.rt.y P,s=
ic/C-Irlorr2 | ilori2 0P, s0r 0P, s 5+ P - 5)
ic/C-/rl or r2 C+ 0P iy 0
C- C- 0Py s, %6 + Psxpsxs — U,
rl or r2* rl (0 =0P, st + Pt gt + P- 5t — U s
rlorrz: r2 )

70

(*): formulais forP, s+ P, s
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:

Recursive Definition of KLV polynomials

In each case the right formula in boxes involves
Py’,é’ with

1) £(5") < £(0) or

2)L(9) =€), L(y") > £(y)
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Recursion Relations

P,,=1
ComputeP, ; like this:

0,0

0,1) =—— (1,1

0,2) =—— 1,2 =—— (2,2

0,3 1,3 2,3 3,3

(G, j)istheP, swith £(y) =1,£(0) = ])
]



Recursion Relations
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Recursion Relations
0,0
0,1 11
0,2 1,2 (2,2
0,3 (1.3 (2,3 (3,3
0,49 19 249 @GH )

0,5 (1,5 (2,5 4,5 (5,5

To computeP, s with £(y ) = 3, £(6) = 5, need potentially all of the
P, s from the blue region.
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Recursion Relations
0,0
0,1 11
0,2 1,2 (2,2
0,3 (1.3 (2,3 (3,3
0,49 19 249 @GH )

0,5 (1,5 (2,5 4,5 (5,5

To computeP, s with £(y ) = 3, £(6) = 5, need potentially all of the
P, s from the blue region.

(Eg: U} ; has 150 terms on average)
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Conclusion (he bad news

In order to computé®, 5 you need to use potentialbll P, y with
£(0") < £(0).

We need to keep aP, ; in RAM!
All accessible from a&ingleprocessor

See:

David Vogan’snarrative October Notices
Marc van Leeuwen'’s technical discussion
www. | i egroups. org/talks
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Fokko’s code computed all KLV polynomials up Ey by late 2005
Challenge Compute KLV for (the large block) oEg

| Z| = 453 060 ( this is the largesilock)

degP, 5) <31

Big Problem we did not have a good idea of the size of the answer
beforehand.

a > 2% = 65,535 (almost certainly)

a; < 2%2=4.3 billion (we hope?)
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Overview
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Fokko’s code computed all KLV polynomials up Ey by late 2005
Challenge Compute KLV for (the large block) oEg

| Z| = 453 060 ( this is the largesilock)

degP, 5) <31

Big Problem we did not have a good idea of the size of the answer
beforehand.

a > 2% = 65,535 (almost certainly)

a; < 2%2=4.3 billion (we hope?)

Crude estimates: need aboutetabyteof RAM (=1,000 gigabytes)
(1 gigabyte = 1 billion bytes = RAM in typical home computer)
Typical computational machine (not a cluster): 4-8 gigabytf RAM
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Many of the polynomials are equal for obvious reasons.
Hope: number of distinct polynomiats 200 million.
Store only the distinct polynomials (cost of pointers)
Hope: average degree = 20

— need aboutt3 gigabytes of RAM

ExperimentgBirne Binegar and Dan Barbasch):
About 800 billion distinct polynomials» 65 billion bytes
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William Stein at Washington lent USAGE, with 64 gigabytes of
RAM (all accessible from one processor)

n
n
.
.
n
L]
-
v
&

G

A .
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Noam Elkies: have to think harder
Idea

2'6 — 65, 536 < Maximum coefficient< 2°2 = 4.3 billion (?)

31 < 25, so to do the calculation(mod p) for p < 32 requires 5 bits
for each coefficient instead of 32, reducing storage by afauit
5/32.
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Noam Elkies: have to think harder
Idea

2'6 — 65, 536 < Maximum coefficient< 2°2 = 4.3 billion (?)

31 < 25, so to do the calculation(mod p) for p < 32 requires 5 bits
for each coefficient instead of 32, reducing storage by afauit
5/32.

252 «3x5x7x11x13x 17 x 19 x 23 x 29 x 31 = 100 billion
You then get the answer mod 100,280,245,065 using the Ghines
Remainder theorem (cost: running the calculation 9 times)
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Noam Elkies: have to think harder
Idea

2'6 — 65, 536 < Maximum coefficient< 2°2 = 4.3 billion (?)

31 < 25, so to do the calculation(mod p) for p < 32 requires 5 bits
for each coefficient instead of 32, reducing storage by afauit
5/32.

252 «3x5x7x11x13x 17 x 19 x 23 x 29 x 31 = 100 billion
You then get the answer mod 100,280,245,065 using the Ghines
Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 354 = 19 billion bytes
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Eventually:
Run the program 4 times, modulo 251, 253, 255 and 256

Least common multiple: 4,145,475,840
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Eventually:

Run the program 4 times, modulo 251, 253, 255 and 256
Least common multiple: 4,145,475,840

Date
Dec. 6
Dec. 19
Dec. 22
Dec. 22
Dec. 26
Dec. 27
Jan. 3

mod
251
251
256
256
255
253
253

Status Result
complete 16 hours

complete 11 hours
complete 12 hours

complete 12 hours
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The final result

Combine the answers using the Chinese Remainder Theorem.
Answer is correct if the biggest coefficient is less than 8,445,840
Total time(on SAGE): 77 hours
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Some Statistics
Size of output 60 gigabytes

Number of distinct polynomiaisl, 181,642,979
Maximal coefficient 11,808,808

Polynomial with the maximal coefficient:

152922 + 3, 472071 + 38, 7919%° + 293 0219™° + 1, 370, 8928 +
4,067,059 + 7,964, 0196 4 11, 159 00*° +

11, 808, 808g** + 9, 859, 91513 + 6, 778 95602 + 3, 964, 36! +
2,015 4419'° 4 906 5679° + 363 611g® + 129 820y’ +
41,23%° + 11, 4260° + 2, 677q* + 49209° + 6192 + 3q
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Some Statistics
Size of output 60 gigabytes
Number of distinct polynomiaisl, 181,642,979
Maximal coefficient 11,808,808
Polynomial with the maximal coefficient:
152022 4 3, 47291 4+ 38, 7919%° 4+ 293 0219*° + 1, 370, 89248 +
4,067,059 4+ 7,964, 01296 + 11, 159 00*° +
11, 808, 80894+ 9, 859 9152 + 6, 778 9560*2 + 3, 964, 369! +
2,015 4419*° 4 906,56 79° + 363 61198 + 129 820q" +
41,23%° + 11, 4260° + 2, 677q* + 49209° + 6192 + 3q

Value of this polynomial at g=160,779,787
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Some Statistics
Size of output 60 gigabytes

Number of distinct polynomiaisl, 181,642,979
Maximal coefficient 11,808,808

Polynomial with the maximal coefficient:

152922 + 3, 472071 + 38, 7919%° + 293 0219™° + 1, 370, 8928 +
4,067,059 + 7,964, 0196 4 11, 159 00*° +

11, 808, 808g** + 9, 859, 91513 + 6, 778 95602 + 3, 964, 36! +
2,015 4419'° 4 906 5679° + 363 611g® + 129 820y’ +
41,23%° + 11, 4260° + 2, 677q* + 49209° + 6192 + 3q

Value of this polynomial at g=160,779,787

Number of coefficients in distinct polynomial$3,721,641,221 (13.9
billion)
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What next?

Putini

K-structure of representations

Singular and non-integral infinitesimal character
Unipotent Representations (Arthur’'s conjecture)
Version 1.0 of the software

Some results on (non)-unitary representations
The Unitary Dual??

Stay tuned. ..
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