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Atlas Calculations: Yesterday

1) (Shilin Yu): Unipotent representations of F4

2) (Dan Ciubotaru): P = MN, M = A2A1A4 ⊂ E8. Spherical
representations

π(ν) = Ind
G
P (|x |ν) (0 ≤ ν ≤ 9/2)

π(ν) is unitary if 0 ≤ ν ≤ 3/10, 1/2,. . . 9/2

3) (Wee Teck Gan): Enumeration of Arthur packets/Friendly
Arthur packets

Sp(8,R) has 50 Arthur packets at [3, 2, 1, 0]. Of these 30 are
friendly, with the following sizes:

[2,1,2,2,2,2,4,4,4,6,10,6,3,4,6,12,8,8,8,4,8,16,9,6,6,12,12,12,8,16]
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Big Picture
G : connected, complex reductive group/R

Problem: Describe/Compute/Understand the Unitary Dual of
G (R)

Ĝ (R) = {irreducible unitary representations of G (R)}/ ∼

Norm-preserving representations of G (R) on a Hilbert space H,
modulo the appropriate notion of equivalence

Assumption: You believe this is an interesting question.

Compact groups: Hermann Weyl (1920s)

SL(2,R): Bargmannn (1947)

Other results: GL(n), complex classical groups, G2. . .

Well known to be a hard problem, and the answer is complicated

Atlas of Lie Groups and Representations (2002): Study this by
computer
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Outline

Today:

1) Report on an algorithm to compute the unitary dual (and a few
words on actually computing it)

2) Progress on Arthur’s conjectures (giving a conceptual
description of a large part of the unitary dual)
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Harish-Chandra: from analysis to algebra

Replace representations of G (R) on Hilbert spaces with
(g,K )-modules

Use the Cartan classification of real forms: real groups are
parametrized by their Cartan (algebraic) involutions θ of G

K = G θ (complex), defines G (R), with G (R)θ = K (R) a maximal
compact subgroup

(π,V ): V is a vector space (no topology) with compatible
algebraic actions π of g,K (complex Lie algebra, complex group)

Work in the setting of admissible (g,K )-modules (finite
K -multiplicities)
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Infinitesimal character

Fix once and for all a Cartan subgroup H ⊂ G ,

h = Lie(H)

γ ∈ h∗ : infinitesimal character

Mγ : Grothendieck group of virtual characters with infinitesimal
character γ

Mγ is finite dimensional, spanned by {irreducible modules} or
{standard modules}
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Langlands parameters

Langlands (+Vogan/Zuckerman/Knapp): description of the
admissible dual (irreducible admissible representations)

Atlas: Pγ : set of parameters for irreducible/standard
representations in Mγ :

Γ = (x , λ, ν):

x ∈ X = K\G/B (the KGB set): a finite set (explicit): x1, . . . , xn

x ∈ X ↔ a Borel subalgebra b ⊃ h (modulo K -conjugacy)

x 7→ θx : involution of H 7→: a real Cartan subgroup H(R)

λ ∈ X ∗(H) + ρ ↔ character of (the ρ-cover of) H(R) ∩ K

ν ∈ X ∗(H)R: character of Lie(H)−θ

Γ 7→ a character of (the ρ-cover of) H(R)

Always assume real infinitesimal character
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Langlands parameters
Given γ: Pγ = {Γ}

Γ 7→ I (Γ) (a standard module): I (Γ) = IndGMN(πM(Γ))

πM(Γ) is a (relative limit of) discrete series of M

I (Γ) 7→ unique irreducible quotient J(Γ)

Ĝadm = {J(Γ) | λ ∈ h∗/W , Γ ∈ Pγ}

Mγ = Z⟨{J(Γ) | Γ ∈ Pγ}⟩ = {I (Γ) | Γ ∈ Pγ}⟩
Change of basis matrix: computed by the Kazhdan-Lusztig-Vogan
polynomials P(Λ, Γ),Q(Λ, Γ) ∈ Z[q].

I (Γ) =
∑
Λ∈Pγ

Q(Λ, Γ)|q=1J(Λ)

J(Γ) =
∑
Λ∈Pγ

±P(Λ, Γ)|q=1I (Λ)
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Ĝadm = {J(Γ) | λ ∈ h∗/W , Γ ∈ Pγ}

Mγ = Z⟨{J(Γ) | Γ ∈ Pγ}⟩ = {I (Γ) | Γ ∈ Pγ}⟩
Change of basis matrix: computed by the Kazhdan-Lusztig-Vogan
polynomials P(Λ, Γ),Q(Λ, Γ) ∈ Z[q].

I (Γ) =
∑
Λ∈Pγ

Q(Λ, Γ)|q=1J(Λ)

J(Γ) =
∑
Λ∈Pγ

±P(Λ, Γ)|q=1I (Λ)



Langlands parameters
Given γ: Pγ = {Γ}
Γ 7→ I (Γ) (a standard module): I (Γ) = IndGMN(πM(Γ))

πM(Γ) is a (relative limit of) discrete series of M

I (Γ) 7→ unique irreducible quotient J(Γ)
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Hermitian Representations

An (invariant, non-degenerate) Hermitian form on (π,V ):

⟨π(X )v⃗ , w⃗⟩+ ⟨v⃗ , π(X )w⃗⟩ = 0 (X ∈ g(R))

(+ similar condition on K ); not necessarily positive definite

⟨π(X )v⃗ , w⃗⟩+ ⟨v⃗ , π(σ(X ))w⃗⟩ = 0 (X ∈ g)

where G (R) = Gσ

The Hermitian dual (representations preserving a Hermitian form)
is known (Knapp/Zuckerman)

Ĝdisc ⊂ Ĝtemp ⊂ Ĝ ⊂ ĜHerm ⊂ Ĝadm
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Hermitian Representations

Restatement of the problem:

1) Given π irreducible, Hermitian: determine if the Hermitian form
is positive definite

2) Describe the set of all such representations for a fixed G (R)

How do you compute the signature of a Hermitian form on an
infinite dimensional vector space?
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Vogan: computing Hermitian forms

Vogan (1980s): Γ = (x , λ, ν) 7→ I (x , λ, ν)

Deform ν to 0: the Hermitian form is upper semi-continuous, with
computable changes at a finite number of points. Specifically: it
changes sign on odd levels of the Jantzen filtration. This filtration
is computed by the KLV polynomials (keeping q).

So: compute the Hermitian form on I (x , λ, ν) by deforming to 0
(where it becomes tempered, i.e. unitary) and keeping track of the
sign changes (inductive calculation)

Major fly in this ointment:

1) I (Γ) might not have an invariant Hermitian form

2) The Hermitian form on I (Γ) is not canonical

Example: SL(2,R), odd principle series, ν ̸= 0: the invariant form
has opposite signs on the two lowest K -types ±1

Conclusion: it is very difficult to formulate a precise algorithm
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2010: The c-form

Recall:

▶ ⟨π(X )v⃗ , w⃗⟩+ ⟨v⃗ , π(σ(X ))w⃗⟩ = 0 (X ∈ g)

Gσ = G (R). Modify this definition: Gσc is compact.

What? Does this make sense?

Theorem: (Adams/Trapa/van Leeuwen/Vogan 2020)

1) Every irreducible representation admits a canonical invariant
c-form (+1 on the lowest K -types)

2) There is a formula to compute the Hermitian form on J(Γ) in
terms of the c-form.

So: write Ic(Γ), Jc(Γ) for these representations equipped with their
canonical c-forms.
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Digression: Hodge Theory

In the 1980’s Schmid and Vilonen observed that every irreducible
representation has a canonical Hodge filtration coming from
Saito’s theory of mixed Hodge modules.

They observed it is related
in some way to the signs of Hermitian forms.

2011: Schmid and Vilonen formulated a precise conjecture relating
the Hodge filtration to the canonical c-form.

2022: Dougal Davis and Kari Vilonen proved a (slightly) weak
version of this conjecture. Roughly speaking: the Hodge filtration,
reduced (mod 2) gives the c-form (later)
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Tempiric Representations

(π,V ): πK =
∑

µ∈K̂ m(µ)µ

Need to parametrize K̂ . Note: K may be disconnected.

Definition: A tempiric representation is: irreducible, tempered,
with real infinitesimal character

In terms of Langlands parameters (x , λ, ν) : ν = 0

Theorem: (Vogan)

1) {tempiric representations} ↔ K̂ (π 7→ the unique lowest
K -type)

2) π finite length ⇒ π|K =
∑n

i=1 aiπi |K (πi tempiric) (unique
finite formula)



Tempiric Representations

(π,V ): πK =
∑

µ∈K̂ m(µ)µ

Need to parametrize K̂ .

Note: K may be disconnected.

Definition: A tempiric representation is: irreducible, tempered,
with real infinitesimal character

In terms of Langlands parameters (x , λ, ν) : ν = 0

Theorem: (Vogan)

1) {tempiric representations} ↔ K̂ (π 7→ the unique lowest
K -type)

2) π finite length ⇒ π|K =
∑n

i=1 aiπi |K (πi tempiric) (unique
finite formula)



Tempiric Representations

(π,V ): πK =
∑

µ∈K̂ m(µ)µ

Need to parametrize K̂ . Note: K may be disconnected.

Definition: A tempiric representation is: irreducible, tempered,
with real infinitesimal character

In terms of Langlands parameters (x , λ, ν) : ν = 0

Theorem: (Vogan)

1) {tempiric representations} ↔ K̂ (π 7→ the unique lowest
K -type)

2) π finite length ⇒ π|K =
∑n

i=1 aiπi |K (πi tempiric) (unique
finite formula)



Tempiric Representations

(π,V ): πK =
∑

µ∈K̂ m(µ)µ

Need to parametrize K̂ . Note: K may be disconnected.

Definition: A tempiric representation is: irreducible, tempered,
with real infinitesimal character

In terms of Langlands parameters (x , λ, ν) : ν = 0

Theorem: (Vogan)

1) {tempiric representations} ↔ K̂ (π 7→ the unique lowest
K -type)

2) π finite length ⇒ π|K =
∑n

i=1 aiπi |K (πi tempiric) (unique
finite formula)



Tempiric Representations

(π,V ): πK =
∑

µ∈K̂ m(µ)µ

Need to parametrize K̂ . Note: K may be disconnected.

Definition: A tempiric representation is: irreducible, tempered,
with real infinitesimal character

In terms of Langlands parameters (x , λ, ν) : ν = 0

Theorem: (Vogan)

1) {tempiric representations} ↔ K̂ (π 7→ the unique lowest
K -type)

2) π finite length ⇒ π|K =
∑n

i=1 aiπi |K (πi tempiric) (unique
finite formula)



Tempiric Representations

(π,V ): πK =
∑

µ∈K̂ m(µ)µ

Need to parametrize K̂ . Note: K may be disconnected.

Definition: A tempiric representation is: irreducible, tempered,
with real infinitesimal character

In terms of Langlands parameters (x , λ, ν) : ν = 0

Theorem: (Vogan)

1) {tempiric representations} ↔ K̂ (π 7→ the unique lowest
K -type)

2) π finite length ⇒ π|K =
∑n

i=1 aiπi |K (πi tempiric) (unique
finite formula)



Tempiric Representations

(π,V ): πK =
∑

µ∈K̂ m(µ)µ

Need to parametrize K̂ . Note: K may be disconnected.

Definition: A tempiric representation is: irreducible, tempered,
with real infinitesimal character

In terms of Langlands parameters (x , λ, ν) : ν = 0

Theorem: (Vogan)

1) {tempiric representations} ↔ K̂ (π 7→ the unique lowest
K -type)

2) π finite length ⇒ π|K =
∑n

i=1 aiπi |K (πi tempiric) (unique
finite formula)



Tempiric Representations

(π,V ): πK =
∑

µ∈K̂ m(µ)µ

Need to parametrize K̂ . Note: K may be disconnected.

Definition: A tempiric representation is: irreducible, tempered,
with real infinitesimal character

In terms of Langlands parameters (x , λ, ν) : ν = 0

Theorem: (Vogan)

1) {tempiric representations} ↔ K̂ (π 7→ the unique lowest
K -type)

2) π finite length ⇒ π|K =
∑n

i=1 aiπi |K (πi tempiric) (unique
finite formula)



Hermitian Forms

Consider Z[s]/⟨s2 = 1⟩

a+ bs keeps track of the signs of a (Hermitian or c-Hermitian)
form:

µ ∈ K̂ , (a+ bs)µ: means the form on (a+ b) copies of µ with the
positive (respectively negative) form on a (resp. b) copies of µ.

Similarly:
∑n

i=1(ai + bi s)πi represents the form on (ai + bi ) copies
of πi |K , with ai/bi positive/negative forms.
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Vogan’s algorithm: c-form version

γ0,Pγ0 , γ ∈ Pγ0

(please excuse the change in notation)

1) Deform Ic(x , λ, ν) to Ic(x , λ, 0), keeping track of changes at
finitely many reducibility points. New terms: smaller parameters

Main Step: I (t) = I (x , λ, tν):

Algorithm (Deformation of the c-form):

Ic((1 + ϵ)t) = Ic((1− ϵ)t)−
∑
τ<γ

s(ℓ0(γ)−ℓ0(τ)/2

[ ∑
δ

τ≤δ≤γ

(−1)ℓ(δ)−ℓ(τ)sℓ(γ)−ℓ(δ)Pτ,δ(s)Qδ,γ(s)

]
Ic(δ))
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Vogan’s algorithm: c-form version

By induction: get an explicit formula

(*) Ic(x , λ, ν) =
∑

vi Ic(γi )

where Ic(γi ) is tempiric and vi ∈ Z[s].

2) Write J(γ) =
∑

ai I (τ)

ai = P(τ, γ)|q=1. Then

(**) Jc(γ) =
∑

wi Ic(τ)

where wi = P(τ, γ)|q=s .

Put (*) and (**) together:
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Algorithm for computing unitarity of a
single representation

Theorem: (Adams/Trapa/van Leeuwen/Vogan-2020)
Given π = J(γ)

The previous slides sketch an algorithm to compute

Jc(γ) =
n∑

i=1

zi Ic(xi , λi , 0) (zi ∈ Z[s])

This converts to a formula

Jh(γ) =
n∑

i=1

z ′i Ih(xi , λi , 0) (z ′i ∈ Z[s])

Then J(γ) is unitary if and only if z ′i ∈ Z for all i (i.e.
z ′i = ai + bi s and bi = 0).
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Some Technical points

Strictly speaking Jh(γ) isn’t well defined. There are some choices
along the way, but in the end the Hermitian form on J(γ) (if it
exists) is unique up to real scalar, and J(γ) is unitary if and only if
this form is positive or negative definite.

To go from Ic(γ) to Ih(γ) is easy in the equal rank case. Otherwise
it requires a long (painful!) digression in twisted KLV polynomials.
See Lusztig-Vogan (2014) and Adams-Vogan (2015).
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Hodge filtration and the c-form

Given a standard module I (γ) = I (x , λ, ν)

The signature polynomial is:
Ic(γ) =

∑
µ∈K̂ wiµi (wi ∈ Z[s])

Recall (a+ bs)µ means the signature on the µ isotopic is (a, b)
(times the dimension of µ)

The Hodge polynomial is

Ih(γ) =
∑
µ∈K̂

fi (v)µi (fi ∈ Z[v ])

(a0 + a1v + . . . anv
n) ∗ µ means: µ has multiplicity ai in the i th

graded piece of the Hodge filtration
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Relation: Hodge filtration/c-form

Theorem: (Davis Vilonen)

The reduction of the Hodge filtration mod 2 gives the c-form.
That is if

Ic(γ) =
∑
µ∈K̂

wiµi (wi ∈ Z[s])

and

Ih(γ) =
∑
µ∈K̂

fi (v)µi (fi ∈ Z[v ])

then
wi = fi (v)|v=s

.
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The FPP conjecture

Γ = (x , λ, ν)

γ = (1+θx )λ
2 + (1−θx )ν

2

Theorem (Davis/Mason-Brown, proof of conjecture of Vogan):
Suppose the infinitesimal character γπ of π is not in the FPP.
Then there is an explicit θ-stable parabolic Q = LU and an
irreducible representation πL such that

π = CohIndGQ(πL)

Furthermore: this induction is in the “weakly good range”⇒ π is
unitary ⇔ πL is unitary.

Remark: The proof (by Davis/Mason-Brown) is an application of
Schmid and Vilonen’s Hodge theory conjectures (proved by
Davis/Vilonen).
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Description of the Unitary Dual

Remark: The set of pairs (x , λ) such that there exists ν such that

γ = (1+θx )λ
2 + (1−θx )ν

2 ∈ FPP is a finite set.

There is a facet decompositionn of the space of ν ′s so that
unitarity is constant on each facet.

For each such (x , λ) there are finitely many facets of ν ′s to check.

So: computing the (x , λ, ν) in the FPP which are unitary is a finite
calculation, and gives a complete description of the unitary dual.
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Description of the Unitary Dual: Summary

Fix G (complex, connected, reductive), θ ∈ Aut(G ), θ2 = 1,

7→ K ,G (R)

Definition: Ĝ (R)FPP = {π ∈ Ĝ (R) | γπ ∈ FPP}

Definition:
Q = Q(G , θ) = {θ − stable parabolics Q = LU ∈ G}/K

Theorem:

Ĝ (R) = ∪Q∈QCohInd
G
Q(

̂L(R)FPP)

Theorem: The FPP has a finite facet decomposition; unitarity is

constant on facets:there is a finite calculation to compute ̂L(R)FPP
for each of (finitely many) Q = LU.
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Definition:
Q = Q(G , θ) = {θ − stable parabolics Q = LU ∈ G}/K

Theorem:
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Some Computer Calculations

For groups of rank 6 we can compute the FPP very quickly.

For E7 (split) there are 2, 025, 523 (x , λ) pairs to check. This takes
about 1 hour on a computer with 500 processors (after 18 months
of mostly mathematical work on the algorithm). The result is:
247, 641 unitary parameters in the FPP.

E8 (split) has ∼ 60, 000, 000 pairs. Stephen Miller has computed
%99.5 of these pairs (over many months).

We hope to be able to do the complete E8 calculation in less than
one month. It is certainly necessary to do this more than once.
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But that’s just a calculation!

We’d like a conceptual understanding of the unitary dual. Work on
this has proceeded on a parallel track, starting with Arthur’s
conjectures.

Given an Arthur parameter Ψ : WR × SL(2,C) →LG we attach an
Arthur packet Π(Ψ) (also known as an ABV packet) by the theory
of Adams/Barbash/Vogan.

We say Ψ is unipotent if ΨC× = 1, i.e. Ψ : Z/2Z× SL(2,C) →LG .

Theorem:

1) Unipotent case: If Ψ is unipotent then Π(Ψ) is unitary.

2) General Arthur packets: In general Π(Ψ) is known to be unitary
in many cases (see the next slide)
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of Adams/Barbash/Vogan.

We say Ψ is unipotent if ΨC× = 1, i.e. Ψ : Z/2Z× SL(2,C) →LG .

Theorem:

1) Unipotent case: If Ψ is unipotent then Π(Ψ) is unitary.

2) General Arthur packets: In general Π(Ψ) is known to be unitary
in many cases (see the next slide)



Arthur’s Conjectures

This Theorem has a complicated history and many contributors,
which I won’t try to sort out in detail. Ingredients:

(Note: “real” means non-complex)

Arthur; Moeglin/Rendard; Mok; Kaletha/Minguez/Shin/White;
Arancibia/Mezo: 1) and 2) for real classical quasisplit groups

Barbasch/Ma/Sun/Zhu: 1) and 2) for real classical groups

Adams/Miller/van Leeuwen/Vogan: 1) for real exceptional groups
(using Atlas)

Davis/Mason-Brown: uniform proof: 1) for complex classical
groups and many cases for real groups (using Hodge theory). Plus
Adams/Mason-Brown/Ionov (unpublished): 1) in all cases, plus 2)
in all “generic” casess.
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Arthur’s conjectures

Ψ : WR × SL(2,C) →LG

Unipotent: Ψ|C× = 1

Ongoing work by Adams, Mason-Brown, Vogan:

If Ψ|C× is generic then Π(Ψ) is unitary.

The missing cases are intermediate. We hope to have a proof
covering all cases. This would imply all Arthur packets are unitary.

Assuming this goes through this gives a conceptual description of a
large part, but not all, of the unitary dual: those representations in
Arthur packets, together with complementary series deformations
of them.

Ongoing work of Mason-Brown, Loseu, Davis, . . . : define a large
class of representations, including those of Arthur type, so that the
full unitary dual is obtained from this by compementary series
deformations.
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