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Suppose G(C) is simply connected.
Theorem: Suppose G(R) is the real form of G(C). Fix a regular
infinitesimal character . Then there is a canonical bijection:

{irreducible representations of G(RR) with infinitesimal character v}

and

—

{(H(R),T) | H(R) is a Cartan subgroup,l € H(R), dl ~y v}/G(R)
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Local Langlands Conjecture:

F is a local field of characteristic 0

W/ is the Weil-Deligne group of F (think: Gal(F/F))
G: connected, reductive group defined over F

G": complex dual group of G

G = GY x Gal(F/F)

Local Langlands Conjecture:

¢: WE =6 — Ny € N(G)adm
(¢ admissible)

Mg is an L-packet

N(G)adm = Uggy v N(9)
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~ 1980: Jim Arthur suggest replacing the Weil-Deligne group with

W WE x SL(2,C) =G
such that Wy, is bounded.

Arthur conjectured that for each such W there should be a finite set
N(V) € N(G)adm

satisfying various properties, including “stability” and unitarity.
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ARTHUR’S UNIPOTENT REPRESENTATIONS

Basic case: W : SL(2,C) =G
(Jacobson-Morozov) W <+ Unipotent Orbit OV in GV

So: there should be a map

OV s OV = {1, ..., 70}

a finite set if irreducible unitary representations of G(F).

Note: This is not a definition. It is not clear if there is a set of
properties which uniquely determine M(OV). Even when there are
it may be difficult to actually compute MN(O).



OVERVIEW OVER R



OVERVIEW OVER R

F=R
We'd like to precisely define, and compute:



OVERVIEW OVER R

F=R
We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the
dual group OV.



OVERVIEW OVER R

F=R
We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the
dual group OV.

2) Honest Arthur packet: W : Zy x SL(2,C) =G



OVERVIEW OVER R

F=R
We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the
dual group OV.

2) Honest Arthur packet: W : Zy x SL(2,C) =G

(So: A weak Arthur packet is a union of honest ones)



OVERVIEW OVER R

F=R
We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the
dual group OV.

2) Honest Arthur packet: W : Zy x SL(2,C) =G
(So: A weak Arthur packet is a union of honest ones)

3) AVann(7): (associated variety of the annihlator, complex
associated variety)



OVERVIEW OVER R

F=R
We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the
dual group OV.

2) Honest Arthur packet: W : Zy x SL(2,C) =G
(So: A weak Arthur packet is a union of honest ones)

3) AVann(7): (associated variety of the annihlator, complex
associated variety)

4) AV(m): (associated variety of 7, real associated variety)



OVERVIEW OVER R

F=R
We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the
dual group OV.

2) Honest Arthur packet: W : Zy x SL(2,C) =G
(So: A weak Arthur packet is a union of honest ones)

3) AVann(7): (associated variety of the annihlator, complex
associated variety)

4) AV(m): (associated variety of 7, real associated variety)

5) AC(m) = > a;O; (associated cycle of 7)
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NILPOTENT ORBIT INVARIANTS

G707 KvQOag =t+s
O: complex nilpotent orbit

Kostant Sekiguchi bijection: nilpotent orbits of G(R) on go and
nilpotent K orbits on s.

Real forms of O: ONgo = O1U---UQO; G(R)-orbits
(equivalently)
ONs=01U---UQO; (K-orbits)
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7 irreducible (g, K)-module
1) AVana(1) = O

2) AV(7r) ={01,...,0,}
3) AC(m) = >_7 a;0;
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WEAK ARTHUR PACKETS

Infinitesimal character of a dual orbit:

OV is a nilpotent orbit for the complex dual group GV.

OV - {H,E,F} - HebhY ~p* = x(0OY)

Definition [Barbasch/Vogan] (weak Arthur packets):
Suppose OV is a nilpotent orbit of GV. Let O be the (special) dual
G-orbit.

Then M(OV) consists of the irreducible representations 7 of G(R)
satisfying:

(a) the infinitesimal character of 7 is x(OV)
(b) AV(x) C O

This is a (weak) Arthur packet of special unipotent representations;
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COMPUTATIONAL INGREDIENTS

1) Langlands classification

2) Fix a regular infinitesimal character v: S, : parameters for
irreducible representations with infinitesimal character ~,

M, =2Z{J[) T €5,})

3) Kazhdan-Lusztig-Vogan polynomials (change of basis matrix for
M)

4) Coherent continuation: explicit representation of W on M,
(given as matrices); cell representations

5) Parametrization of complex nilpotent orbits

6) The Springer correspondence (W — \)
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Fix G(C), G(R). For simplicity assume G(C) is simply connected.
0) Compute the conjugacy classes of W = W(G(C)).

1) Explicitly compute M,, P(M,)

2) Compute the blocks in M, and for each block B the dual block
BY

3) Run over the blocks BY. Compute the KLV polynomials for

each BY.

4) Compute the cells CY,...,C) in BY

n

5) For each cell CV compute the representation mev of WY on CY,
and its character fcv = trace(mev)

6) Compute d = min{k € Z | (0cv, Osk(re)) # 0}
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ALGORITHM

7) Let Pov =37, oy Osa(ref)(w)mev (w)e End(CY) (this is a
projection, up to scalar)

8) Compute the representation ocv of W on the image of Pev:
this is the special representation in the cell CV.

Fix a complex even nilpotent orbit OV

9) Check if the nilpotent orbit attached to o¢v (by the Springer
correspondence) is equal to OV. If so: translate (apply a
Zuckerman translation functor to) the irreducible representations in
C to infinitesimal character x(OV)

10) M(OVY) is the set of (non-zero) irreducible representations
obtained this way.
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Primitive ldeals

The columns of Ppv correspond to the irreducible representations
in the cell. Two such representations have the same primitive ideal
< the corresponding columns are multiples of each other.
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HONEST ARTHUR PACKETS

Recall an honest unipotent Arthur packet is attached to a
homomorphism
V:7Z x SL(2,C) —»tG

(Note: Wx/WQR ~ Z,)

Skipping some details. ..

V|si2,c) = O

Zo = {1,j}, W(j) normalizes OV, (assume integral infinitesimal
character) — KV-orbit O} on sV

Problem: We're on the dual side.

Final ingredient: Vogan duality: given an irreducible representation
7 of G (regular, integral infinitesimal character) — 7V, an
irreducible representation of a real form of GV.
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HONEST ARTHUR PACKETS

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):
Given W : Wy x SL(2,C) =L G (admissible), such that W|cx = 1.

Associated to V is:
0) a nilpotent orbit OV for G

1) an infinitesimal character for G (assume this is integral)
2) a real form for GV, with Cartan involution 6V
3) a KV-orbit on 5"

Then M(OV) consists of the irreducible representations 7 of G(R)
satisfying:

(a) the infinitesimal character of 7 is x(OV)

(b) OY C AV(mY)



HONEST ARTHUR PACKETS

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):
Given W : Wy x SL(2,C) =L G (admissible), such that W|cx = 1.

Associated to V is:
0) a nilpotent orbit OV for G

1) an infinitesimal character for G (assume this is integral)
2) a real form for GV, with Cartan involution 6V
3) a KV-orbit on 5"

Then M(OV) consists of the irreducible representations 7 of G(R)
satisfying:

(a) the infinitesimal character of 7 is x(OV)
(b) OY C AV(mY)

What David Vogan talked about this morning was part of an
algorithm to compute AV().



