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Digression: parametrizing representations
of G (R)

Suppose G (C) is simply connected.

Theorem: Suppose G (R) is the real form of G (C). Fix a regular
infinitesimal character γ. Then there is a canonical bijection:

{irreducible representations of G (R) with infinitesimal character γ}

and

{(H(R), Γ) | H(R) is a Cartan subgroup, Γ ∈ Ĥ(R), dΓ ∼W γ}/G (R)
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Langlands Conjecture

Local Langlands Conjecture:

F is a local field of characteristic 0

W ′
F is the Weil-Deligne group of F (think: Gal(F/F ))

G : connected, reductive group defined over F

G∨: complex dual group of G

LG = G∨ o Gal(F/F )

Local Langlands Conjecture:

φ : W ′
F →LG 7→ Πφ ⊂ Π(G )adm

(φ admissible)

Πφ is an L-packet

Π(G )adm = ·∪{φ}/G∨Π(φ)
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Arthur’s Conjectures

∼ 1980: Jim Arthur suggest replacing the Weil-Deligne group with

Ψ : W ′
F × SL(2,C)→LG

such that Ψ|W ′F is bounded.

Arthur conjectured that for each such Ψ there should be a finite set

Π(Ψ) ⊂ Π(G )adm

satisfying various properties, including “stability” and unitarity.
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Basic case: Ψ : SL(2,C)→LG

(Jacobson-Morozov) Ψ↔ Unipotent Orbit O∨ in G∨

So: there should be a map

O∨ 7→ Π(O∨) = {π1, . . . , πn}

a finite set if irreducible unitary representations of G (F ).

Note: This is not a definition. It is not clear if there is a set of
properties which uniquely determine Π(O∨). Even when there are
it may be difficult to actually compute Π(O).
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Overview over R

F = R
We’d like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the
dual group O∨.

2) Honest Arthur packet: Ψ : Z2 × SL(2,C)→LG

(So: A weak Arthur packet is a union of honest ones)

3) AVann(π): (associated variety of the annihlator, complex
associated variety)

4) AV(π): (associated variety of π, real associated variety)

5) AC(π) =
∑

aiOi (associated cycle of π)
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Nilpotent orbit invariants

G , θ,K , g0, g = k + s

O: complex nilpotent orbit

Kostant Sekiguchi bijection: nilpotent orbits of G (R) on g0 and
nilpotent K orbits on s.

Real forms of O: O ∩ g0 = O1 ∪ · · · ∪ Oi G (R)-orbits

(equivalently)

O ∩ s = O1 ∪ · · · ∪ Oi (K -orbits)
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Weak Arthur packets

Infinitesimal character of a dual orbit:

O∨ is a nilpotent orbit for the complex dual group G∨.

O∨ → {H,E ,F} → H ∈ h∨ ' h∗ → χ(O∨)

Definition [Barbasch/Vogan] (weak Arthur packets):
Suppose O∨ is a nilpotent orbit of G∨. Let O be the (special) dual
G -orbit.

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) AV(π) ⊂ O

This is a (weak) Arthur packet of special unipotent representations¡
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Algorithm

Fix G (C), G (R). For simplicity assume G (C) is simply connected.

0) Compute the conjugacy classes of W = W (G (C)).

1) Explicitly compute Mρ, P(Mρ)

2) Compute the blocks in Mρ, and for each block B the dual block
B∨

3) Run over the blocks B∨. Compute the KLV polynomials for
each B∨.

4) Compute the cells C∨1 , . . . , C∨n in B∨

5) For each cell C∨ compute the representation πC∨ of W ∨ on C∨,
and its character θC∨ = trace(πC∨)

6) Compute d = min{k ∈ Z | 〈θC∨ , θSk (ref)〉 6= 0}
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7) Let PC∨ =
∑

w∈W θSd (ref)(w)πC∨(w)∈ End(C∨) (this is a
projection, up to scalar)

8) Compute the representation σC∨ of W on the image of PC∨ :
this is the special representation in the cell C∨.

Fix a complex even nilpotent orbit O∨

9) Check if the nilpotent orbit attached to σC∨ (by the Springer
correspondence) is equal to O∨. If so: translate (apply a
Zuckerman translation functor to) the irreducible representations in
C to infinitesimal character χ(O∨)

10) Π(O∨) is the set of (non-zero) irreducible representations
obtained this way.
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Primitive Ideals
The columns of PC∨ correspond to the irreducible representations
in the cell. Two such representations have the same primitive ideal
⇔ the corresponding columns are multiples of each other.
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[Interlude: some examples]



Honest Arthur packets

Recall an honest unipotent Arthur packet is attached to a
homomorphism

Ψ : Z2 × SL(2,C)→LG

(Note: WR/W
0
R ' Z2)

Skipping some details. . .

Ψ|SL(2,C) → O∨

Z2 = {1, j}, Ψ(j) normalizes O∨,(assume integral infinitesimal
character) → K∨-orbit O∨i on s∨

Problem: We’re on the dual side.

Final ingredient: Vogan duality: given an irreducible representation
π of G (regular, integral infinitesimal character) → π∨, an
irreducible representation of a real form of G∨.
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Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G

(assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).



Honest Arthur packets

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given Ψ : WR × SL(2,C)→L G (admissible), such that Ψ|C× = 1.

Associated to Ψ is:
0) a nilpotent orbit O∨ for G∨

1) an infinitesimal character for G (assume this is integral)

2) a real form for G∨, with Cartan involution θ∨

3) a K∨-orbit on s∨

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is χ(O∨)

(b) O∨ ⊂ AV(π∨)

What David Vogan talked about this morning was part of an
algorithm to compute AV(π).


