

Computing Unipotent Representations

Jeffrey Adams Sun Yat-sen University, Guangzhou August 4, 2018

Slides available at: www.liegroups.org

Digression: parametrizing representations of $G(\mathbb{R})$

Digression: parametrizing representations of $G(\mathbb{R})$

Suppose $G(\mathbb{C})$ is simply connected.

Digression: parametrizing representations of $G(\mathbb{R})$

Suppose $G(\mathbb{C})$ is simply connected.

Theorem: Suppose $G(\mathbb{R})$ is the real form of $G(\mathbb{C})$. Fix a regular infinitesimal character γ . Then there is a canonical bijection:

{irreducible representations of $G(\mathbb{R})$ with infinitesimal character γ }

and

 $\{(H(\mathbb{R}),\Gamma) \mid H(\mathbb{R}) \text{ is a Cartan subgroup}, \Gamma \in \widehat{H(\mathbb{R})}, d\Gamma \sim_W \gamma\}/G(\mathbb{R})$

Local Langlands Conjecture:

Local Langlands Conjecture:

F is a local field of characteristic 0

Local Langlands Conjecture: F is a local field of characteristic 0 W'_F is the Weil-Deligne group of F

Local Langlands Conjecture:

F is a local field of characteristic 0

```
W'_F is the Weil-Deligne group of F (think: Gal(\overline{F}/F))
```

Local Langlands Conjecture:

- F is a local field of characteristic 0
- W'_F is the Weil-Deligne group of F (think: $Gal(\overline{F}/F)$)

G: connected, reductive group defined over F

Local Langlands Conjecture:

F is a local field of characteristic 0

 W'_F is the Weil-Deligne group of F (think: $Gal(\overline{F}/F)$)

G: connected, reductive group defined over F

 G^{\vee} : complex dual group of G

Local Langlands Conjecture:

F is a local field of characteristic 0

 W'_F is the Weil-Deligne group of F (think: $Gal(\overline{F}/F)$)

G: connected, reductive group defined over F

- G^{\vee} : complex dual group of G
- ${}^{L}\!G = G^{\vee} \rtimes \operatorname{Gal}(\overline{F}/F)$

Local Langlands Conjecture:

F is a local field of characteristic 0

 W'_F is the Weil-Deligne group of F (think: $Gal(\overline{F}/F)$)

G: connected, reductive group defined over F

- G^{\vee} : complex dual group of G
- ${}^{L}\!G = G^{\vee} \rtimes \operatorname{Gal}(\overline{F}/F)$

Local Langlands Conjecture:

$$\phi: W'_F \to^L G$$

Local Langlands Conjecture:

F is a local field of characteristic 0

 W'_F is the Weil-Deligne group of F (think: $Gal(\overline{F}/F)$)

G: connected, reductive group defined over F

- G^{\vee} : complex dual group of G
- ${}^{L}\!G = G^{\vee} \rtimes \operatorname{Gal}(\overline{F}/F)$

Local Langlands Conjecture:

$$\phi: W'_F
ightarrow^L G \mapsto \Pi_\phi \subset \Pi(G)_{adm}$$

Local Langlands Conjecture:

F is a local field of characteristic 0

 W'_F is the Weil-Deligne group of F (think: $Gal(\overline{F}/F)$)

G: connected, reductive group defined over F

- G^{\vee} : complex dual group of G
- ${}^{L}\!G = G^{\vee} \rtimes \operatorname{Gal}(\overline{F}/F)$

Local Langlands Conjecture:

$$\phi: W'_F
ightarrow^L G \mapsto \Pi_\phi \subset \Pi(G)_{adm}$$

(ϕ admissible)

Local Langlands Conjecture:

F is a local field of characteristic 0

 W'_F is the Weil-Deligne group of F (think: $Gal(\overline{F}/F)$)

G: connected, reductive group defined over F

- G^{\vee} : complex dual group of G
- ${}^{L}\!G = G^{\vee} \rtimes \operatorname{Gal}(\overline{F}/F)$

Local Langlands Conjecture:

$$\phi: W'_F
ightarrow^L G \mapsto \Pi_\phi \subset \Pi(G)_{adm}$$

(ϕ admissible)

 Π_{ϕ} is an L-packet

Local Langlands Conjecture:

F is a local field of characteristic 0

 W'_F is the Weil-Deligne group of F (think: $Gal(\overline{F}/F)$)

G: connected, reductive group defined over F

- G^{\vee} : complex dual group of G
- ${}^{L}\!G = G^{\vee} \rtimes \operatorname{Gal}(\overline{F}/F)$

Local Langlands Conjecture:

$$\phi: W'_F
ightarrow^L G \mapsto \Pi_\phi \subset \Pi(G)_{adm}$$

(ϕ admissible)

 Π_{ϕ} is an L-packet

$$\Pi(G)_{adm} = \bigcup_{\{\phi\}/G^{\vee}} \Pi(\phi)$$

ARTHUR'S CONJECTURES

 \sim 1980: Jim Arthur suggest replacing the Weil-Deligne group with

 $\Psi: W'_F \times SL(2,\mathbb{C}) \rightarrow^L G$

such that $\Psi|_{W'_{\mathcal{F}}}$ is bounded.

 \sim 1980: Jim Arthur suggest replacing the Weil-Deligne group with

 $\Psi: W'_F \times SL(2,\mathbb{C}) \rightarrow^L G$

such that $\Psi|_{W'_{r}}$ is bounded.

Arthur conjectured that for each such Ψ there should be a finite set

 $\Pi(\Psi) \subset \Pi(G)_{adm}$

satisfying various properties, including "stability" and unitarity.

Basic case: $\Psi : SL(2, \mathbb{C}) \rightarrow^{L} G$

Basic case: $\Psi : SL(2, \mathbb{C}) \rightarrow^{L} G$

(Jacobson-Morozov) $\Psi \leftrightarrow$ Unipotent Orbit \mathcal{O}^{\vee} in \mathcal{G}^{\vee}

Basic case: $\Psi : SL(2, \mathbb{C}) \rightarrow^{L} G$

(Jacobson-Morozov) $\Psi \leftrightarrow$ Unipotent Orbit \mathcal{O}^{\vee} in \mathcal{G}^{\vee}

So: there should be a map

Basic case: $\Psi : SL(2, \mathbb{C}) \rightarrow^{L} G$

(Jacobson-Morozov) $\Psi \leftrightarrow$ Unipotent Orbit \mathcal{O}^{\vee} in \mathcal{G}^{\vee}

So: there should be a map

 \mathcal{O}^{\vee}

Basic case: $\Psi : SL(2, \mathbb{C}) \rightarrow^{L} G$

(Jacobson-Morozov) $\Psi \leftrightarrow$ Unipotent Orbit \mathcal{O}^{\vee} in \mathcal{G}^{\vee}

So: there should be a map

$$\mathcal{O}^{\vee} \mapsto \Pi(\mathcal{O}^{\vee}) = \{\pi_1, \ldots, \pi_n\}$$

Basic case: $\Psi : SL(2, \mathbb{C}) \rightarrow^{L} G$

(Jacobson-Morozov) $\Psi \leftrightarrow$ Unipotent Orbit \mathcal{O}^{\vee} in \mathcal{G}^{\vee}

So: there should be a map

$$\mathcal{O}^{\vee} \mapsto \Pi(\mathcal{O}^{\vee}) = \{\pi_1, \ldots, \pi_n\}$$

a finite set if irreducible unitary representations of G(F).

Basic case: $\Psi : SL(2, \mathbb{C}) \rightarrow^{L} G$

(Jacobson-Morozov) $\Psi \leftrightarrow$ Unipotent Orbit \mathcal{O}^{\vee} in \mathcal{G}^{\vee}

So: there should be a map

$$\mathcal{O}^{\vee} \mapsto \Pi(\mathcal{O}^{\vee}) = \{\pi_1, \ldots, \pi_n\}$$

a finite set if irreducible unitary representations of G(F). Note: This is not a definition.

Basic case: $\Psi : SL(2, \mathbb{C}) \rightarrow^{L} G$

(Jacobson-Morozov) $\Psi \leftrightarrow$ Unipotent Orbit \mathcal{O}^{\vee} in \mathcal{G}^{\vee}

So: there should be a map

$$\mathcal{O}^{\vee} \mapsto \Pi(\mathcal{O}^{\vee}) = \{\pi_1, \ldots, \pi_n\}$$

a finite set if irreducible unitary representations of G(F).

Note: This is not a definition. It is not clear if there is a set of properties which uniquely determine $\Pi(\mathcal{O}^{\vee})$.

Basic case: $\Psi : SL(2, \mathbb{C}) \rightarrow^{L} G$

(Jacobson-Morozov) $\Psi \leftrightarrow$ Unipotent Orbit \mathcal{O}^{\vee} in \mathcal{G}^{\vee}

So: there should be a map

$$\mathcal{O}^{\vee} \mapsto \Pi(\mathcal{O}^{\vee}) = \{\pi_1, \ldots, \pi_n\}$$

a finite set if irreducible unitary representations of G(F).

Note: This is not a definition. It is not clear if there is a set of properties which uniquely determine $\Pi(\mathcal{O}^{\vee})$. Even when there are it may be difficult to actually compute $\Pi(\mathcal{O})$.

Overview over \mathbb{R}

We'd like to precisely define, and compute:

We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the dual group $\mathcal{O}^{\vee}.$

We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the dual group $\mathcal{O}^{\vee}.$

2) Honest Arthur packet: $\Psi : \mathbb{Z}_2 \times SL(2,\mathbb{C}) \rightarrow^L G$

We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the dual group $\mathcal{O}^{\vee}.$

2) Honest Arthur packet: $\Psi : \mathbb{Z}_2 \times SL(2,\mathbb{C}) \rightarrow^L G$

(So: A weak Arthur packet is a union of honest ones)
$F = \mathbb{R}$

We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the dual group $\mathcal{O}^{\vee}.$

2) Honest Arthur packet: $\Psi : \mathbb{Z}_2 \times SL(2,\mathbb{C}) \rightarrow^L G$

(So: A weak Arthur packet is a union of honest ones)

3) $AV_{ann}(\pi)$: (associated variety of the annihilator, complex associated variety)

 $F = \mathbb{R}$

We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the dual group $\mathcal{O}^{\vee}.$

2) Honest Arthur packet: $\Psi : \mathbb{Z}_2 \times SL(2,\mathbb{C}) \rightarrow^L G$

(So: A weak Arthur packet is a union of honest ones)

3) $AV_{ann}(\pi)$: (associated variety of the annihilator, complex associated variety)

4) AV(π): (associated variety of π , real associated variety)

 $F = \mathbb{R}$

We'd like to precisely define, and compute:

1) Weak Arthur packet: associated to a unipotent orbit for the dual group $\mathcal{O}^{\vee}.$

2) Honest Arthur packet: $\Psi : \mathbb{Z}_2 \times SL(2,\mathbb{C}) \rightarrow^L G$

(So: A weak Arthur packet is a union of honest ones)

3) $AV_{ann}(\pi)$: (associated variety of the annihilator, complex associated variety)

- 4) AV(π): (associated variety of π , real associated variety)
- 5) AC(π) = $\sum a_i O_i$ (associated cycle of π)

NILPOTENT ORBIT INVARIANTS

- $G, \theta, K, \mathfrak{g}_0, \mathfrak{g} = \mathfrak{k} + \mathfrak{s}$
- $\mathcal{O}:$ complex nilpotent orbit

- $G, \theta, K, \mathfrak{g}_0, \mathfrak{g} = \mathfrak{k} + \mathfrak{s}$
- $\mathcal{O}:$ complex nilpotent orbit

Kostant Sekiguchi bijection: nilpotent orbits of $G(\mathbb{R})$ on \mathfrak{g}_0 and nilpotent K orbits on \mathfrak{s} .

 $\mathcal{O}:$ complex nilpotent orbit

Kostant Sekiguchi bijection: nilpotent orbits of $G(\mathbb{R})$ on \mathfrak{g}_0 and nilpotent K orbits on \mathfrak{s} .

Real forms of $\mathcal{O}: \mathcal{O} \cap \mathfrak{g}_0 = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_i \ G(\mathbb{R})$ -orbits

 $\mathcal{O}:$ complex nilpotent orbit

Kostant Sekiguchi bijection: nilpotent orbits of $G(\mathbb{R})$ on \mathfrak{g}_0 and nilpotent K orbits on \mathfrak{s} .

Real forms of $\mathcal{O}: \mathcal{O} \cap \mathfrak{g}_0 = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_i \ G(\mathbb{R})$ -orbits (equivalently)

 $\mathcal{O}:$ complex nilpotent orbit

Kostant Sekiguchi bijection: nilpotent orbits of $G(\mathbb{R})$ on \mathfrak{g}_0 and nilpotent K orbits on \mathfrak{s} .

Real forms of \mathcal{O} : $\mathcal{O} \cap \mathfrak{g}_0 = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_i \ G(\mathbb{R})$ -orbits

(equivalently)

 $\mathcal{O} \cap \mathfrak{s} = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_i$ (*K*-orbits)

NILPOTENT ORBIT INVARIANTS

 π : irreducible (\mathfrak{g}, K)-module

 $\begin{aligned} \pi: \text{ irreducible } (\mathfrak{g}, \mathcal{K})\text{-module} \\ 1) \ \mathsf{AV}_{\mathsf{ann}}(\pi) = \overline{\mathcal{O}} \end{aligned}$

 $\pi: \text{ irreducible } (\mathfrak{g}, \mathcal{K})\text{-module}$ 1) $AV_{ann}(\pi) = \overline{\mathcal{O}}$ 2) $AV(\pi) = \{\mathcal{O}_1, \dots, \mathcal{O}_n\}$

 $\pi: \text{ irreducible } (\mathfrak{g}, \mathcal{K})\text{-module}$ 1) $AV_{ann}(\pi) = \overline{\mathcal{O}}$ 2) $AV(\pi) = \{\mathcal{O}_1, \dots, \mathcal{O}_n\}$ 3) $AC(\pi) = \sum_{i=1}^{n} a_i \mathcal{O}_i$

Infinitesimal character of a dual orbit:

Infinitesimal character of a dual orbit:

 \mathcal{O}^{\vee} is a nilpotent orbit for the complex dual group \mathcal{G}^{\vee} .

Infinitesimal character of a dual orbit:

 \mathcal{O}^{\vee} is a nilpotent orbit for the complex dual group \mathcal{G}^{\vee} .

$$\mathcal{O}^{\vee} o \{H, E, F\} o H \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^* o \chi(\mathcal{O}^{\vee})$$

Infinitesimal character of a dual orbit:

 \mathcal{O}^{\vee} is a nilpotent orbit for the complex dual group \mathcal{G}^{\vee} .

$$\mathcal{O}^{\vee} \to \{H, E, F\} \to H \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^* \to \chi(\mathcal{O}^{\vee})$$

Definition [Barbasch/Vogan] (weak Arthur packets): Suppose \mathcal{O}^{\vee} is a nilpotent orbit of G^{\vee} . Let \mathcal{O} be the (special) dual G-orbit.

Infinitesimal character of a dual orbit:

 \mathcal{O}^{\vee} is a nilpotent orbit for the complex dual group \mathcal{G}^{\vee} .

$$\mathcal{O}^{\vee} \to \{H, E, F\} \to H \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^* \to \chi(\mathcal{O}^{\vee})$$

Definition [Barbasch/Vogan] (weak Arthur packets): Suppose \mathcal{O}^{\vee} is a nilpotent orbit of G^{\vee} . Let \mathcal{O} be the (special) dual *G*-orbit.

Then $\Pi(\mathcal{O}^{\vee})$ consists of the irreducible representations π of $G(\mathbb{R})$ satisfying:

Infinitesimal character of a dual orbit:

 \mathcal{O}^{\vee} is a nilpotent orbit for the complex dual group \mathcal{G}^{\vee} .

$$\mathcal{O}^{\vee} \to \{H, E, F\} \to H \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^* \to \chi(\mathcal{O}^{\vee})$$

Definition [Barbasch/Vogan] (weak Arthur packets): Suppose \mathcal{O}^{\vee} is a nilpotent orbit of G^{\vee} . Let \mathcal{O} be the (special) dual *G*-orbit.

Then $\Pi(\mathcal{O}^{\vee})$ consists of the irreducible representations π of $G(\mathbb{R})$ satisfying:

(a) the infinitesimal character of π is $\chi(\mathcal{O}^{\vee})$

Infinitesimal character of a dual orbit:

 \mathcal{O}^{\vee} is a nilpotent orbit for the complex dual group \mathcal{G}^{\vee} .

$$\mathcal{O}^{\vee} \to \{H, E, F\} \to H \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^* \to \chi(\mathcal{O}^{\vee})$$

Definition [Barbasch/Vogan] (weak Arthur packets): Suppose \mathcal{O}^{\vee} is a nilpotent orbit of G^{\vee} . Let \mathcal{O} be the (special) dual *G*-orbit.

Then $\Pi(\mathcal{O}^{\vee})$ consists of the irreducible representations π of $G(\mathbb{R})$ satisfying:

(a) the infinitesimal character of π is $\chi(\mathcal{O}^{\vee})$

(b) $\mathsf{AV}(\pi) \subset \overline{\mathcal{O}}$

Infinitesimal character of a dual orbit:

 \mathcal{O}^{\vee} is a nilpotent orbit for the complex dual group \mathcal{G}^{\vee} .

$$\mathcal{O}^{\vee} \to \{H, E, F\} \to H \in \mathfrak{h}^{\vee} \simeq \mathfrak{h}^* \to \chi(\mathcal{O}^{\vee})$$

Definition [Barbasch/Vogan] (weak Arthur packets): Suppose \mathcal{O}^{\vee} is a nilpotent orbit of G^{\vee} . Let \mathcal{O} be the (special) dual *G*-orbit.

Then $\Pi(\mathcal{O}^{\vee})$ consists of the irreducible representations π of $G(\mathbb{R})$ satisfying:

(a) the infinitesimal character of π is $\chi(\mathcal{O}^{\vee})$

(b) AV $(\pi) \subset \overline{\mathcal{O}}$

This is a (weak) Arthur packet of special unipotent representations;

COMPUTATIONAL INGREDIENTS

COMPUTATIONAL INGREDIENTS

1) Langlands classification

COMPUTATIONAL INGREDIENTS

- 1) Langlands classification
- 2) Fix a regular infinitesimal character γ :

2) Fix a regular infinitesimal character γ : S_{γ} : parameters for irreducible representations with infinitesimal character γ

2) Fix a regular infinitesimal character γ : S_{γ} : parameters for irreducible representations with infinitesimal character γ ,

 $M_{\gamma} = \mathbb{Z} \langle \{ J(\Gamma) \mid \Gamma \in S_{\gamma} \} \rangle$

2) Fix a regular infinitesimal character γ : S_{γ} : parameters for irreducible representations with infinitesimal character γ ,

$$M_{\gamma} = \mathbb{Z} \langle \{ J(\Gamma) \mid \Gamma \in S_{\gamma} \} \rangle$$

3) Kazhdan-Lusztig-Vogan polynomials (change of basis matrix for M_γ)

2) Fix a regular infinitesimal character γ : S_{γ} : parameters for irreducible representations with infinitesimal character γ ,

$$M_{\gamma} = \mathbb{Z} \langle \{ J(\Gamma) \mid \Gamma \in S_{\gamma} \} \rangle$$

3) Kazhdan-Lusztig-Vogan polynomials (change of basis matrix for M_γ)

4) Coherent continuation: explicit representation of W on M_{γ} (given as matrices); cell representations

2) Fix a regular infinitesimal character γ : S_{γ} : parameters for irreducible representations with infinitesimal character γ ,

 $M_{\gamma} = \mathbb{Z} \langle \{ J(\Gamma) \mid \Gamma \in S_{\gamma} \} \rangle$

3) Kazhdan-Lusztig-Vogan polynomials (change of basis matrix for M_γ)

4) Coherent continuation: explicit representation of W on M_{γ} (given as matrices); cell representations

5) Parametrization of complex nilpotent orbits

2) Fix a regular infinitesimal character γ : S_{γ} : parameters for irreducible representations with infinitesimal character γ ,

 $M_{\gamma} = \mathbb{Z} \langle \{ J(\Gamma) \mid \Gamma \in S_{\gamma} \} \rangle$

3) Kazhdan-Lusztig-Vogan polynomials (change of basis matrix for M_γ)

4) Coherent continuation: explicit representation of W on M_{γ} (given as matrices); cell representations

5) Parametrization of complex nilpotent orbits

6) The Springer correspondence ($\hat{\mathcal{W}} \rightarrow \mathcal{N})$

Algorithm

Algorithm

Fix $G(\mathbb{C})$, $G(\mathbb{R})$.

Algorithm

Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected.
Fix G(ℂ), G(ℝ). For simplicity assume G(ℂ) is simply connected.
0) Compute the conjugacy classes of W = W(G(ℂ)).

Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected. 0) Compute the conjugacy classes of $W = W(G(\mathbb{C}))$.

1) Explicitly compute M_{ρ} , $\mathcal{P}(M_{\rho})$

Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected.

- 0) Compute the conjugacy classes of $W = W(G(\mathbb{C}))$.
- 1) Explicitly compute M_{ρ} , $\mathcal{P}(M_{\rho})$

2) Compute the blocks in $\mathsf{M}_\rho,$ and for each block $\mathcal B$ the dual block $\mathcal B^\vee$

Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected.

- 0) Compute the conjugacy classes of $W = W(G(\mathbb{C}))$.
- 1) Explicitly compute M_{ρ} , $\mathcal{P}(M_{\rho})$

2) Compute the blocks in $\mathsf{M}_\rho,$ and for each block $\mathcal B$ the dual block $\mathcal B^\vee$

3) Run over the blocks \mathcal{B}^{\vee} .

Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected.

- 0) Compute the conjugacy classes of $W = W(G(\mathbb{C}))$.
- 1) Explicitly compute M_{ρ} , $\mathcal{P}(M_{\rho})$
- 2) Compute the blocks in $M_\rho,$ and for each block ${\cal B}$ the dual block ${\cal B}^\vee$

3) Run over the blocks \mathcal{B}^{\vee} . Compute the KLV polynomials for each \mathcal{B}^{\vee} .

Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected.

- 0) Compute the conjugacy classes of $W = W(G(\mathbb{C}))$.
- 1) Explicitly compute M_{ρ} , $\mathcal{P}(M_{\rho})$

2) Compute the blocks in $M_\rho,$ and for each block ${\cal B}$ the dual block ${\cal B}^\vee$

3) Run over the blocks \mathcal{B}^{\vee} . Compute the KLV polynomials for each \mathcal{B}^{\vee} .

4) Compute the cells $\mathcal{C}_1^{\vee}, \ldots, \mathcal{C}_n^{\vee}$ in \mathcal{B}^{\vee}

Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected.

- 0) Compute the conjugacy classes of $W = W(G(\mathbb{C}))$.
- 1) Explicitly compute M_{ρ} , $\mathcal{P}(M_{\rho})$

2) Compute the blocks in $M_\rho,$ and for each block ${\cal B}$ the dual block ${\cal B}^\vee$

3) Run over the blocks \mathcal{B}^{\vee} . Compute the KLV polynomials for each \mathcal{B}^{\vee} .

4) Compute the cells $\mathcal{C}_1^{\vee}, \ldots, \mathcal{C}_n^{\vee}$ in \mathcal{B}^{\vee}

5) For each cell \mathcal{C}^{\vee} compute the representation $\pi_{\mathcal{C}^{\vee}}$ of W^{\vee} on \mathcal{C}^{\vee} , and its character $\theta_{\mathcal{C}^{\vee}} = \operatorname{trace}(\pi_{\mathcal{C}^{\vee}})$

Fix $G(\mathbb{C})$, $G(\mathbb{R})$. For simplicity assume $G(\mathbb{C})$ is simply connected.

- 0) Compute the conjugacy classes of $W = W(G(\mathbb{C}))$.
- 1) Explicitly compute M_{ρ} , $\mathcal{P}(M_{\rho})$

2) Compute the blocks in $\mathsf{M}_\rho,$ and for each block $\mathcal B$ the dual block $\mathcal B^\vee$

3) Run over the blocks \mathcal{B}^{\vee} . Compute the KLV polynomials for each \mathcal{B}^{\vee} .

4) Compute the cells $\mathcal{C}_1^{\vee}, \ldots, \mathcal{C}_n^{\vee}$ in \mathcal{B}^{\vee}

5) For each cell \mathcal{C}^{\vee} compute the representation $\pi_{\mathcal{C}^{\vee}}$ of W^{\vee} on \mathcal{C}^{\vee} , and its character $\theta_{\mathcal{C}^{\vee}} = \operatorname{trace}(\pi_{\mathcal{C}^{\vee}})$

6) Compute $d = \min\{k \in \mathbb{Z} \mid \langle \theta_{\mathcal{C}^{\vee}}, \theta_{\mathcal{S}^{k}(\text{ref})} \rangle \neq 0\}$

8) Compute the representation $\sigma_{\mathcal{C}^{\vee}}$ of W on the image of $P_{\mathcal{C}^{\vee}}$: this is the special representation in the cell \mathcal{C}^{\vee} .

8) Compute the representation $\sigma_{\mathcal{C}^{\vee}}$ of W on the image of $P_{\mathcal{C}^{\vee}}$: this is the special representation in the cell \mathcal{C}^{\vee} .

Fix a complex even nilpotent orbit \mathcal{O}^{\vee}

8) Compute the representation $\sigma_{\mathcal{C}^{\vee}}$ of W on the image of $P_{\mathcal{C}^{\vee}}$: this is the special representation in the cell \mathcal{C}^{\vee} .

Fix a complex even nilpotent orbit \mathcal{O}^{\vee}

9) Check if the nilpotent orbit attached to $\sigma_{\mathcal{C}^{\vee}}$ (by the Springer correspondence) is equal to \mathcal{O}^{\vee} .

8) Compute the representation $\sigma_{\mathcal{C}^{\vee}}$ of W on the image of $P_{\mathcal{C}^{\vee}}$: this is the special representation in the cell \mathcal{C}^{\vee} .

Fix a complex even nilpotent orbit \mathcal{O}^{\vee}

9) Check if the nilpotent orbit attached to $\sigma_{\mathcal{C}^{\vee}}$ (by the Springer correspondence) is equal to \mathcal{O}^{\vee} . If so: translate (apply a Zuckerman translation functor to) the irreducible representations in \mathcal{C} to infinitesimal character $\chi(\mathcal{O}^{\vee})$

8) Compute the representation $\sigma_{\mathcal{C}^{\vee}}$ of W on the image of $P_{\mathcal{C}^{\vee}}$: this is the special representation in the cell \mathcal{C}^{\vee} .

Fix a complex even nilpotent orbit \mathcal{O}^{\vee}

9) Check if the nilpotent orbit attached to $\sigma_{\mathcal{C}^{\vee}}$ (by the Springer correspondence) is equal to \mathcal{O}^{\vee} . If so: translate (apply a Zuckerman translation functor to) the irreducible representations in \mathcal{C} to infinitesimal character $\chi(\mathcal{O}^{\vee})$

10) $\Pi(\mathcal{O}^{\vee})$ is the set of (non-zero) irreducible representations obtained this way.

THE ALGORITHM: PRIMITIVE IDEALS

THE ALGORITHM: PRIMITIVE IDEALS

Primitive Ideals

Primitive Ideals

The columns of $P_{\mathcal{C}^{\vee}}$ correspond to the irreducible representations in the cell. Two such representations have the same primitive ideal \Leftrightarrow the corresponding columns are multiples of each other.

[Interlude: some examples]

Recall an honest unipotent Arthur packet is attached to a homomorphism

 $\Psi: \mathbb{Z}_2 \times SL(2, \mathbb{C}) \rightarrow^L G$

Recall an honest unipotent Arthur packet is attached to a homomorphism

 $\Psi:\mathbb{Z}_2\times SL(2,\mathbb{C})\to^L G$

(Note: $W_{\mathbb{R}}/W_{\mathbb{R}}^0 \simeq \mathbb{Z}_2$)

 $\Psi:\mathbb{Z}_2\times SL(2,\mathbb{C})\to^L G$

(Note: $W_{\mathbb{R}}/W_{\mathbb{R}}^0\simeq \mathbb{Z}_2$)

Skipping some details...

 $\Psi:\mathbb{Z}_2\times SL(2,\mathbb{C})\to^L G$

(Note: $W_{\mathbb{R}}/W_{\mathbb{R}}^0\simeq \mathbb{Z}_2$)

Skipping some details...

 $\Psi|_{\mathit{SL}(2,\mathbb{C})} o O^{ee}$

 $\Psi:\mathbb{Z}_2\times SL(2,\mathbb{C})\to^L G$

(Note: $W_{\mathbb{R}}/W_{\mathbb{R}}^0\simeq \mathbb{Z}_2$)

Skipping some details...

 $egin{aligned} \Psi|_{\mathit{SL}(2,\mathbb{C})} & o O^ee \ &\mathbb{Z}_2 = \{1,j\}, \ \Psi(j) \ ext{normalizes} \ O^ee, \end{aligned}$

 $\Psi:\mathbb{Z}_2\times SL(2,\mathbb{C})\to^L G$

(Note: $W_{\mathbb{R}}/W_{\mathbb{R}}^0\simeq \mathbb{Z}_2$)

Skipping some details...

 $\Psi|_{SL(2,\mathbb{C})} \to O^{\vee}$ $\mathbb{Z}_2 = \{1, j\}, \Psi(j) \text{ normalizes } O^{\vee}, (\text{assume integral infinitesimal character}) \to K^{\vee} \text{-orbit } \mathcal{O}_i^{\vee} \text{ on } \mathfrak{s}^{\vee}$

 $\Psi:\mathbb{Z}_2\times \textit{SL}(2,\mathbb{C})\to^L\!\!\!G$

(Note: $W_{\mathbb{R}}/W_{\mathbb{R}}^0\simeq \mathbb{Z}_2$)

Skipping some details...

 $\Psi|_{SL(2,\mathbb{C})} \to O^{\vee}$ $\mathbb{Z}_2 = \{1, j\}, \Psi(j) \text{ normalizes } O^{\vee}, (\text{assume integral infinitesimal character}) \to K^{\vee} \text{-orbit } \mathcal{O}_i^{\vee} \text{ on } \mathfrak{s}^{\vee}$

Problem: We're on the dual side.

 $\Psi:\mathbb{Z}_2\times \textit{SL}(2,\mathbb{C})\to^L\!\!\!G$

(Note: $W_{\mathbb{R}}/W_{\mathbb{R}}^0\simeq \mathbb{Z}_2$)

Skipping some details...

$$\begin{split} \Psi|_{SL(2,\mathbb{C})} &\to O^{\vee} \\ \mathbb{Z}_2 = \{1,j\}, \ \Psi(j) \text{ normalizes } O^{\vee}, (\text{assume integral infinitesimal character}) &\to K^{\vee}\text{-orbit } \mathcal{O}_i^{\vee} \text{ on } \mathfrak{s}^{\vee} \end{split}$$

Problem: We're on the dual side.

Final ingredient: Vogan duality: given an irreducible representation π of *G* (regular, integral infinitesimal character)

 $\Psi:\mathbb{Z}_2\times \textit{SL}(2,\mathbb{C})\to^L\!\!\!G$

(Note: $W_{\mathbb{R}}/W_{\mathbb{R}}^0\simeq \mathbb{Z}_2$)

Skipping some details...

$$\begin{split} \Psi|_{SL(2,\mathbb{C})} &\to O^{\vee} \\ \mathbb{Z}_2 = \{1,j\}, \ \Psi(j) \text{ normalizes } O^{\vee}, (\text{assume integral infinitesimal character}) &\to K^{\vee}\text{-orbit } \mathcal{O}_i^{\vee} \text{ on } \mathfrak{s}^{\vee} \end{split}$$

Problem: We're on the dual side.

Final ingredient: Vogan duality: given an irreducible representation π of G (regular, integral infinitesimal character) $\rightarrow \pi^{\vee}$, an irreducible representation of a real form of G^{\vee} .

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets): Given $\Psi : W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$.

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets): Given $\Psi : W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$. Associated to Ψ is: 0) a nilpotent orbit O^{\vee} for G^{\vee}

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given $\Psi: W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$.

Associated to Ψ is:

0) a nilpotent orbit O^{\vee} for G^{\vee}

1) an infinitesimal character for G

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given $\Psi: W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$.

Associated to Ψ is:

0) a nilpotent orbit O^{\vee} for G^{\vee}

1) an infinitesimal character for G (assume this is integral)

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given $\Psi: W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$.

Associated to Ψ is:

0) a nilpotent orbit O^{\vee} for G^{\vee}

- 1) an infinitesimal character for G (assume this is integral)
- 2) a real form for G^{\vee} , with Cartan involution θ^{\vee}

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given $\Psi: W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$.

Associated to Ψ is:

0) a nilpotent orbit O^{\vee} for G^{\vee}

- 1) an infinitesimal character for G (assume this is integral)
- 2) a real form for G^{\vee} , with Cartan involution θ^{\vee}
- 3) a K^{\vee} -orbit on \mathfrak{s}^{\vee}

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given $\Psi: W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$.

Associated to Ψ is:

0) a nilpotent orbit O^{\vee} for G^{\vee}

- 1) an infinitesimal character for G (assume this is integral)
- 2) a real form for G^{\vee} , with Cartan involution θ^{\vee}
- 3) a K^{\vee} -orbit on \mathfrak{s}^{\vee}

Then $\Pi(\mathcal{O}^{\vee})$ consists of the irreducible representations π of $G(\mathbb{R})$ satisfying:

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given $\Psi: W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$.

Associated to Ψ is:

0) a nilpotent orbit O^{\vee} for G^{\vee}

- 1) an infinitesimal character for G (assume this is integral)
- 2) a real form for G^{\vee} , with Cartan involution θ^{\vee}
- 3) a K^{\vee} -orbit on \mathfrak{s}^{\vee}

Then $\Pi(\mathcal{O}^{\vee})$ consists of the irreducible representations π of $G(\mathbb{R})$ satisfying:

(a) the infinitesimal character of π is $\chi(\mathcal{O}^{\vee})$

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given $\Psi: W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$.

Associated to Ψ is:

0) a nilpotent orbit O^{\vee} for G^{\vee}

- 1) an infinitesimal character for G (assume this is integral)
- 2) a real form for G^{\vee} , with Cartan involution θ^{\vee}
- 3) a K^{\vee} -orbit on \mathfrak{s}^{\vee}

Then $\Pi(\mathcal{O}^{\vee})$ consists of the irreducible representations π of $G(\mathbb{R})$ satisfying:

(a) the infinitesimal character of π is $\chi(\mathcal{O}^{\vee})$

(b) $\mathcal{O}^{ee} \subset \mathsf{AV}(\pi^{ee})$

Definition [Adams/Barbasch/Vogan] (Honest Arthur packets):

Given $\Psi: W_{\mathbb{R}} \times SL(2, \mathbb{C}) \rightarrow^{L} G$ (admissible), such that $\Psi|_{\mathbb{C}^{\times}} = 1$.

Associated to Ψ is:

0) a nilpotent orbit O^{\vee} for G^{\vee}

- 1) an infinitesimal character for G (assume this is integral)
- 2) a real form for G^{\vee} , with Cartan involution θ^{\vee}
- 3) a K^{\vee} -orbit on \mathfrak{s}^{\vee}

Then $\Pi(\mathcal{O}^{\vee})$ consists of the irreducible representations π of $G(\mathbb{R})$ satisfying:

(a) the infinitesimal character of π is $\chi(\mathcal{O}^{\vee})$

(b) $\mathcal{O}^{\vee} \subset \mathsf{AV}(\pi^{\vee})$

What David Vogan talked about this morning was part of an algorithm to compute $AV(\pi)$.