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Big Picture

G : connected complex reductive group defined over R

Problem: Describe/Compute/Understand the Unitary Dual of
G (R):

Ĝ (R) = {irreducible unitary representations of G (R)}/ ∼

Norm-preserving representations of G (R) on a Hilbert space,
modulo the appropriate notion of equivalence

Assumption: You believe this is an interesting question.

Compact groups (Weyl, 1920s), SL(2,R): Bargmann (1947),. . .

Well known to be a hard problem, and the answer is complicated

Atlas of Lie Groups and Representations (2002): study this
with the aid of a computer
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Ĝ (R) = {irreducible unitary representations of G (R)}/ ∼

Norm-preserving representations of G (R) on a Hilbert space,
modulo the appropriate notion of equivalence

Assumption: You believe this is an interesting question.

Compact groups (Weyl, 1920s), SL(2,R): Bargmann (1947),. . .

Well known to be a hard problem, and the answer is complicated

Atlas of Lie Groups and Representations (2002): study this
with the aid of a computer



Big Picture

G : connected complex reductive group defined over R

Problem: Describe/Compute/Understand the Unitary Dual of
G (R):
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Outline

Today:

1) Report on an algorithm to compute the unitary dual (a few
words on actually computing it)

2) Progress on a conceptual understanding of the unitary dual:
Arthur’s conjectures (and beyond)
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Harish-Chandra: from analysis to algebra

Replace representations of G (R) with (g,K )-modules

Cartan classification of real forms: θ (algebraic) involution

K = G θ (complex); K (R) = G (R)θ

(π,V ) vector space; compatible actions of g,K
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Infinitesimal Character

Fix once and for all: Cartan subgroup H ⊂ G , h = Lie(H) ≃ Cn

γ ∈ h∗: defines an infinitesimal character

Mγ : Grothendieck group of virtual character with infinitesimal
character γ

Mγ is finite dimensional, spanned by {standard modules} or
{irreducible modules}

Note: Only real infinitesimal character (γ ∈ X ∗(H)⊗R).
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Langlands parameters

Langlands + Knapp/Vogan/Zuckerman: description of the
admissible dual

Atlas: Pγ : a set of parameters for the irreducible/standard
modules in Mγ

Γ = (x , λ, ν):

x ∈ X = K\G/B, an explicit finite set {x0, . . . , xn}

X ∋ x 7→ a Borel subalgebra b ⊃ h and θX (involution of H)

λ ∈ X ∗(H) + ρ: character of H(R)θxρ
ν ∈ X ∗(H)⊗Q: character of h−θ

Summary: Γ = (finite set, vector, rational vector) 7→ Ĥ(R)ρ
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Langlands Parameters

γ 7→ Pγ = {Γ}

Γ 7→ I (Γ): a standard module: I (Γ) = IndGMN(πM(Γ))

πM(Γ): (relative limit of) discrete series

I (Γ) 7→ J(Γ): unique irreducible quotient

Ĝadm = {J(Γ) | γ ∈ h∗/W , Γ ∈ Pγ}

Mγ = Z⟨{I (Γ)}⟩ = Z⟨{J(Γ)}⟩

Change of basis matrix: the Kazhdan-Lusztig-Vogan polynomials
PΛ,Γ,QΛ,Γ ∈ Z[q]:

I (Γ) =
∑
Λ∈Pγ

QΛ,Γ(1)J(Λ)

J(Γ) =
∑
Λ∈Pγ

(−1)ℓ(Λ)−ℓ(Γ)PΛ,Γ(1)J(Λ)
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Hermitian Representations

Hermitian form ⟨ , ⟩ on (π,V ):

⟨π(X )v⃗ , w⃗⟩+ ⟨v⃗ , π(X )w⃗⟩⟩ = 0 (X ∈ g(R))

In terms of g = g(C):

⟨π(X )v⃗ , w⃗⟩+ ⟨v⃗ , π(σ(X ))w⃗⟩⟩ = 0 (X ∈ g(C))

The Hermitian dual (representations admitting an invariant
Hermitian form) is known (Knapp/Zuckerman)
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Hermitian representations

Restatement of the problem:

1) Given π ∈ Ĝherm determine if the invariant form is positive
definite

2) For a given G (R), describe the set of all such representations

How do you compute the signature of a Hermitian form on an
infinite dimensional vector space?



Hermitian representations

Restatement of the problem:

1) Given π ∈ Ĝherm determine if the invariant form is positive
definite

2) For a given G (R), describe the set of all such representations

How do you compute the signature of a Hermitian form on an
infinite dimensional vector space?



Hermitian representations

Restatement of the problem:
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Vogan: computing Hermitian forms

Vogan (1980s): Γ = (x , λ, ν) 7→ I (x , λ, ν)

Deform ν to 0. The form is upper semi-continuous; computable
sign changes at a finite number of points (at odd levels of the
Jantzen filtration), computed by the KLV polynomials

So: compute the form on I (x , λ, ν) by induction, reducing to the
case ν = 0 ↔ tempered (unitary)

Major fly in this ointment:

1) I (Γ) might not have an invariant Hermitian form

2) The Hermitian form on I (Γ) isn’t canonical

Example: An irreducible principle series of SL(2,R) with odd
K -types and ν ∈ R, ν ̸= 0:

2 lowest K -types ±1, any invariant form has opposite signs on
them.
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Hermitian Forms

G (R) = G (C)σ;

⟨π(X )v⃗ , w⃗⟩+ ⟨v⃗ , π(σ(X ))w⃗⟩ = 0 (X ∈ g)

Modify this and use σc instead, where G (C)σc is compact. This is
the c-Hermitian form.

What?

Does this make sense?

Theorem: Adams/Trapa/van Leeuwen/Vogan:

1) Every irreducible representation admits a canonical invariant
c-Hermitian form (positive on the lowest K -types)

2) There is an algorithm to compute the Hermitian form in terms
of the c-Hermitian form.

So: Write Ic(Γ), Jc(Γ) for these representations, equipped with
their canonical c-Hermitian forms
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Digression: Hodge Theory

1980s: Schmid and Vilonen: every representation has a canonical
Hodge filtration

(Saito, mixed Hodge modules).

Related in some (intriguing but complicated) way to the
(non-canonical!) invariant Hermitian form

2011: Schmid and Vilonen: a precise conjecture relating the Hodge
filtration to the canonical c-Hermitian form.

2020: Based on some conjectures about the Hodge filtration, we
formulated an algorithm to compute the Hodge filtration, and
implemented this in Atlas.

2022: Dougal Davis and Kari Vilonen proved a (slightly) weak
version of the conjecture.

Idea: the Hodge filtration (parametrized by Z) reduced mod 2
gives the c-Hermitian form (a Z/2Z object)
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Tempiric Representations

Restriction to K :

πK ≃
∑
µ∈K̂

m(µ)µ

Parametrize K? Problem: K may be disconnected

Definition: a tempiric representation is one which is tempered and
has real infinitesimal character.

Precisely the representations J(Γ) = I (Γ) with Γ = (x , λ, 0).

Theorem: (Vogan)

1) {tempiric representations} ↔ K̂ (π 7→ the unique lowest
K -type)

2) If π is any representation then π|K ≃
∑n

i=1 aiπi |K (a unique
finite formula)
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Vogan’s algorithm: c-Hermitian form version

1) Deform Ic(x , λ, ν) to Ic(x , λ, 0), keeping track of sign changes
along the way.

There will be new terms involving smaller
parameters 7→ an inductive algorithm.

Main step: let Ic(t) = Ic(x , λ, tν)

Algorithm: (deformation of the c-Hermitian form)

Ic((1 + ϵ)t = Ic((1− ϵ)t)−
∑
τ<γ

sℓ0(γ)−ℓ0(τ)

∗

 ∑
τ<δ<γ

(−1)ℓ(δ)−ℓ(τ)sℓ(γ)−ℓ(δ)Pτ,δ(s)Qδ,γ(s)

 Ic(δ)
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Vogan’s algorithm: c-Hermitian form version

By induction, get an algorithm:

Ic(x , λ, ν) =
n∑

i=1

vi Ic(γi ) (vi ∈ Z[s], Ic(γi ) tempiric)

Also, recall there is a formula:

J(Γ) =
∑
Λ∈Pγ

(−1)ℓ(Λ)−ℓ(Γ)PΛ,Γ(1)J(Λ)

There is a refinement of this formula to the c-form on J(Γ):

Jc(Γ) =
∑
Λ∈Pγ

(−1)ℓ0(Λ)−ℓ0(Γ)PΛ,Γ(s)J(Λ)
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Algorithm for unitarity of π

Conclusion: The previous discussion sketches an algorithm to
compute

Jc(γ) =
n∑

i=1

zi Ic(xi , λi , 0) (zi ∈ Z[s])

RHS: tempiric⇒ unitary.

This can be converted to a formula

J(γ) =
n∑

i=1

z ′i I (xi , λi , 0) (z ′i ∈ Z[s])

J(γ) is unitary ⇔ all z ′i ∈ Z (z ′i = ai + 0 ∗ s)



Algorithm for unitarity of π

Conclusion: The previous discussion sketches an algorithm to
compute

Jc(γ) =
n∑

i=1

zi Ic(xi , λi , 0) (zi ∈ Z[s])

RHS: tempiric⇒ unitary.

This can be converted to a formula

J(γ) =
n∑

i=1

z ′i I (xi , λi , 0) (z ′i ∈ Z[s])

J(γ) is unitary ⇔ all z ′i ∈ Z (z ′i = ai + 0 ∗ s)



Algorithm for unitarity of π

Conclusion: The previous discussion sketches an algorithm to
compute

Jc(γ) =
n∑

i=1

zi Ic(xi , λi , 0) (zi ∈ Z[s])

RHS: tempiric⇒ unitary.

This can be converted to a formula

J(γ) =
n∑

i=1

z ′i I (xi , λi , 0) (z ′i ∈ Z[s])

J(γ) is unitary ⇔ all z ′i ∈ Z (z ′i = ai + 0 ∗ s)



Algorithm for unitarity of π

Conclusion: The previous discussion sketches an algorithm to
compute

Jc(γ) =
n∑

i=1

zi Ic(xi , λi , 0) (zi ∈ Z[s])

RHS: tempiric⇒ unitary.

This can be converted to a formula

J(γ) =
n∑

i=1

z ′i I (xi , λi , 0) (z ′i ∈ Z[s])

J(γ) is unitary ⇔ all z ′i ∈ Z (z ′i = ai + 0 ∗ s)



Ignore this slide

Caveats: We’re eliding some technical points.

(Minor): we can multiply a Hermitian form by −1, which amounts
to replacing a+ bs with b + as.

The passage Ic(γ) 7→ I (γ) is easy in the equal rank case. In
general: a (long and painful) digression about twisted KLV
polynomials.

Know the Hermitian form on tempiric representations (positive
definite). (Strangely): don’t (a priori) know the c-form.
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The FPP conjecture

The fundamental parallelepiped (FPP) is the set

{γ ∈ X ∗(H)R | 0 ≤ ⟨γ, ∨α⟩ ≤ 1, ∨α simple}

Union of facets, dimension 0, 1, . . . , rank(G ). Closure of the union
of |W (G )|/|Zsc | alcoves of the affine Weyl group.

Γ = (x , λ, ν), π = J(Γ) infinitesimal character:

γπ =
(1 + θx)λ

2
+

(1− θx)ν

2

Definition: The FPP unitary dual is the set of irreducible unitary
representations π such that the infinitesimal character γπ is in the
FPP.
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The FPP conjecture

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)

Suppose π is an irreducible representation, γπ not in the FPP.
Then there is

i) θ-stable parabolic Q = LU

ii) irreducible πL of L

(both given explicitly) such that

1) π = CohIndGQ(πL)

2) π is unitary ⇔ πL is unitary.

(“weakly fair range”)



The FPP conjecture

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)
Suppose π is an irreducible representation, γπ not in the FPP.

Then there is

i) θ-stable parabolic Q = LU

ii) irreducible πL of L

(both given explicitly) such that

1) π = CohIndGQ(πL)

2) π is unitary ⇔ πL is unitary.

(“weakly fair range”)



The FPP conjecture

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)
Suppose π is an irreducible representation, γπ not in the FPP.
Then there is

i) θ-stable parabolic Q = LU

ii) irreducible πL of L

(both given explicitly) such that

1) π = CohIndGQ(πL)

2) π is unitary ⇔ πL is unitary.

(“weakly fair range”)



The FPP conjecture

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)
Suppose π is an irreducible representation, γπ not in the FPP.
Then there is

i) θ-stable parabolic Q = LU

ii) irreducible πL of L

(both given explicitly) such that

1) π = CohIndGQ(πL)

2) π is unitary ⇔ πL is unitary.

(“weakly fair range”)



The FPP conjecture

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)
Suppose π is an irreducible representation, γπ not in the FPP.
Then there is

i) θ-stable parabolic Q = LU

ii) irreducible πL of L

(both given explicitly) such that

1) π = CohIndGQ(πL)

2) π is unitary ⇔ πL is unitary.

(“weakly fair range”)



The FPP conjecture

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)
Suppose π is an irreducible representation, γπ not in the FPP.
Then there is

i) θ-stable parabolic Q = LU

ii) irreducible πL of L

(both given explicitly) such that

1) π = CohIndGQ(πL)

2) π is unitary ⇔ πL is unitary.

(“weakly fair range”)



The FPP conjecture

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)
Suppose π is an irreducible representation, γπ not in the FPP.
Then there is

i) θ-stable parabolic Q = LU

ii) irreducible πL of L

(both given explicitly) such that

1) π = CohIndGQ(πL)

2) π is unitary ⇔ πL is unitary.

(“weakly fair range”)



The FPP conjecture

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)
Suppose π is an irreducible representation, γπ not in the FPP.
Then there is

i) θ-stable parabolic Q = LU

ii) irreducible πL of L

(both given explicitly) such that

1) π = CohIndGQ(πL)

2) π is unitary ⇔ πL is unitary.

(“weakly fair range”)



The FPP conjecture

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)
Suppose π is an irreducible representation, γπ not in the FPP.
Then there is

i) θ-stable parabolic Q = LU

ii) irreducible πL of L

(both given explicitly) such that

1) π = CohIndGQ(πL)

2) π is unitary ⇔ πL is unitary.

(“weakly fair range”)



The FPP conjecture

Remark: The set of pairs (x , λ) such that there exists ν with
(x , λ, ν) in the FPP is a finite set.

Facet decomposition of ν ′s: unitarity is constant on each facet.

For each (x , λ) there are a finite number of facets to check.

Conclusion: Calculating the FPP unitary dual is a finite problem:
check unitarity for one representation in each of (finitely many)
facets for each (x , λ).

Together with the reduction provided by the FPP Theorem this
gives a description of the unitary dual.
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The unitary dual is a closed set in the Fell topology. This implies
that the finite set of facets in the FPP has a natural topology, and
the FPP set is closed.

Note: The pictures for different (x , λ) interact in a complicated
way.
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Spherical representations of E8

Here is a graph of the closure relations among the 9,282 spherical
unitary representations of E8 (split)
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Description of the Unitary dual: Summary

G complex, connected, reductive, θ ∈ Aut(G ), θ2 = 1,K ,G (R)

Definition: ĜFPP = {π ∈ Ĝ (R) | γπ ∈ FPP}

Definition: Q = Q(G , θ) = {θ-stable parabolics Q = LU ⊂ G}/K

Theorem:

Ĝ (R) = ∪Q∈QCohInd
G
Q(

̂L(R)FPP)

The FPP has a finite facet decomposition; unitarity is constant on

facets; there is a finite calculation to compute ̂L(R)FPP for each of
the (finitely many) Q.
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Some computer results

Groups up to rank 6 are quite fast on a laptop. . .



group # time group # time group # time
su(2) 1 0.000 sl(2,R) 7 0.007 su(3) 1 0.000
su(2,1) 20 0.015 sl(3,R) 9 0.014 so(5) 1 0.000
so(4,1) 12 0.024 so(3,2) 46 0.044 g2 1 0.000
g2(R) 60 0.039 su(4) 1 0.000 su(3,1) 40 0.036
su(2,2) 126 0.072 sl(2,H) 8 0.020 sl(4,R) 47 0.067
so(7) 1 0.000 so(6,1) 17 0.069 so(5,2) 129 0.349
so(4,3) 207 1.029 sp(3) 1 0.001 sp(2,1) 33 0.202
sp(6,R) 319 1.330 su(5) 1 0.000 su(4,1) 67 0.338
su(3,2) 458 1.985 sl(5,R) 66 0.513 so(9) 1 0.001
so(8,1) 22 0.316 so(7,2) 231 1.682 so(6,3) 668 5.029
so(5,4) 1244 13.061 sp(4) 1 0.000 sp(3,1) 66 0.665
sp(2,2) 252 1.542 sp(8,R) 2043 17.548 so(8) 1 0.001
so(6,2) 225 1.286 so*(8)[0,1] 225 1.216 so*(8)[1,0] 224 1.300
so(4,4) 1062 5.259 so(7,1) 11 0.166 so(5,3) 215 1.993

f4 1 0.000 f4(so(9)) 51 0.746 f4(R) 1864 39.995
su(6) 1 0.000 su(5,1) 101 0.760 su(4,2) 1243 7.609
su(3,3) 2786 11.500 sl(3,H) 37 0.409 sl(6,R) 286 3.569
so(11) 1 0.001 so(10,1) 27 0.897 so(9,2) 352 4.871
so(8,3) 1376 19.230 so(7,4) 5094 108.205 so(6,5) 6485 172.788
sp(5) 1 0.007 sp(4,1) 111 2.167 sp(3,2) 907 14.038

sp(10,R) 13768 295.383 so(10) 1 0.008 so(8,2) 343 3.149
so*(12)[1,0] 6305 142.027 so*(12)[0,1] 6413 114.670 so(8,4) 10365 334.109

so(6,6) 30309 912.176 so(11,1) 17 1.394 so(9,3) 1124 35.933
so(7,5) 8427 544.170 e6 1 0.052 e6(so(10).u(1)) 3413 98.846
e6(q) 19831 648.611 e6(f4) 58 1.918 e6(R) 2217 98.264
su(8) 1 0.001 su(7,1) 190 4.614 su(6,2) 5242 109.933
su(5,3) 37314 836.892 su(4,4) 70237 1137.030 sl(4,H) 221 5.268
sl(8,R) 1775 121.184 so(15) 1 0.013 so(14,1) 37 9.604
so(13,2) 651 40.589 so(12,3) 3700 216.952 so(11,4) 24725 3584.465
so(10,5) 74867 12576.352 so(9,6) 194538 90513.295 sp(7) 1 0.002
sp(6,1) 237 19.414 sp(5,2) 5389 495.628 sp(4,3) 24722 3007.446



E7 and E8

We’ve done E7(split): ∼ 16 hours on a laptop, or 1 hour on a
parallel machine.

E8: Steve Miller computed the FPP unitary set for E8(split).

Answer: 3, 075, 281 unitary representations in the FPP.

We have checked independently that these representations are
indeed unitary.

Now: check all the remaining representations are not unitary (i.e.
we haven’t missed anything). This is much harder: there are
billions of non-unitary facets.
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E6/E7/E8

group #(x , lambda) #unitary time (secs)

E6(split) 26,325 2,217 98

E6(quat) 74,459 19,831 662.316

E7(split) 2,025,526 237,641 ∼ 16 hours

E8(split) ∼60 M 3,075,281 ?



But that’s just a calculation!

We’d like a conceptual understanding of the unitary dual.

Parallel track. . . Arthur’s conjectures. . .

Ψ : WR →LG 7→ Arthur packet Π(Ψ) (also known as an ABV
packet) by the theory of Adams/Barbasch/Vogan.

Ψ is unipotent: Ψ|C∗ = 1

Theorem:

1) Unipotent case: if Ψ is unipotent then Π(Ψ) is unitary

2) General Arthur packets: In many cases Π(Ψ) is known to be
unitary (see the following slide)
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Arthur’s Conjectures

Long and complicated history/many contributors. . .

Ingredients:

(“real” means “not complex”)

Arthur; Moeglin/Renard; Mok;Kaletha/Minguez/Shin/White;
Adams/Arancibia/Mezo: 1) and 2): real classical quasisplit groups

Barbash/Ma/Sun/Zhu: 1): all real classical groups

Adams/Miller/van Leeuwen/Vogan: 1): real exceptional groups
(using atlas)

Davis/Mason-Brown uniform proof: 1): all complex groups; many
cases for real groups (Hodge theory). Plus
Adams/Ionov/Mason-Brown/Vogan (unpublished): 1) in all cases,
and 2) under a certain genericity condition.
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cases for real groups (Hodge theory).

Plus
Adams/Ionov/Mason-Brown/Vogan (unpublished): 1) in all cases,
and 2) under a certain genericity condition.
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What’s left

Assume all of Arthur’s representations are unitary.

What’s missing?

Complementary series: deform Arthur representations

Also: representations (e.g. the oscillator representation) which are
“unipotent” (but not Arthur)

There may still be some surprises.

Please stay tuned for the next talk.
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Thank you Jim!


