Atlas of Lie Groups and Representations

The Unitary Dual

Conference in Honor of Jim Arthur Fields Institute August 11, 2025

Jeffrey Adams University of Maryland Institute for Defense Analysis

Atlas Project Members

Jeffrey Adams Dan Barbasch Birne Binegar Bill Casselman Dan Ciubotaru Scott Crofts Fokko du Cloux Stephen Miller Lucas Mason-Brown Alfred Noel Tatiana Howard

Annegret Paul Patrick Polo Susana Salamanca John Stembridge Peter Trapa Marc van Leeuwen **David Vogan** Wai-Ling Yee Jiu-Kang Yu Gregg Zuckerman Alessandra Pantano

 \emph{G} : connected complex reductive group defined over $\mathbb R$

G : connected complex reductive group defined over $\mathbb R$

Problem: Describe/Compute/Understand the **Unitary Dual** of $G(\mathbb{R})$:

 ${\it G}$: connected complex reductive group defined over ${\mathbb R}$

Problem: Describe/Compute/Understand the **Unitary Dual** of $G(\mathbb{R})$:

$$\widehat{G(\mathbb{R})} = \{ ext{irreducible unitary representations of } G(\mathbb{R}) \} / \sim$$

G : connected complex reductive group defined over $\mathbb R$

Problem: Describe/Compute/Understand the **Unitary Dual** of $G(\mathbb{R})$:

$$\widehat{G(\mathbb{R})} = \{ ext{irreducible unitary representations of } G(\mathbb{R}) \} / \sim$$

Norm-preserving representations of $G(\mathbb{R})$ on a Hilbert space, modulo the appropriate notion of equivalence

G : connected complex reductive group defined over $\mathbb R$

Problem: Describe/Compute/Understand the **Unitary Dual** of $G(\mathbb{R})$:

$$\widehat{G(\mathbb{R})} = \{ ext{irreducible unitary representations of } G(\mathbb{R}) \} / \sim$$

Norm-preserving representations of $G(\mathbb{R})$ on a Hilbert space, modulo the appropriate notion of equivalence

Assumption:

 ${\it G}$: connected complex reductive group defined over ${\mathbb R}$

Problem: Describe/Compute/Understand the **Unitary Dual** of $G(\mathbb{R})$:

$$\widehat{G(\mathbb{R})} = \{ ext{irreducible unitary representations of } G(\mathbb{R}) \} / \sim$$

Norm-preserving representations of $G(\mathbb{R})$ on a Hilbert space, modulo the appropriate notion of equivalence

Assumption: You believe this is an interesting question.

 ${\it G}$: connected complex reductive group defined over ${\mathbb R}$

Problem: Describe/Compute/Understand the **Unitary Dual** of $G(\mathbb{R})$:

$$\widehat{G(\mathbb{R})} = \{ ext{irreducible unitary representations of } G(\mathbb{R}) \} / \sim$$

Norm-preserving representations of $G(\mathbb{R})$ on a Hilbert space, modulo the appropriate notion of equivalence

Assumption: You believe this is an interesting question.

Compact groups (Weyl, 1920s), $SL(2,\mathbb{R})$: Bargmann (1947),...

 ${\it G}$: connected complex reductive group defined over ${\mathbb R}$

Problem: Describe/Compute/Understand the **Unitary Dual** of $G(\mathbb{R})$:

$$\widehat{G(\mathbb{R})} = \{ ext{irreducible unitary representations of } G(\mathbb{R}) \} / \sim$$

Norm-preserving representations of $G(\mathbb{R})$ on a Hilbert space, modulo the appropriate notion of equivalence

Assumption: You believe this is an interesting question.

Compact groups (Weyl, 1920s), $SL(2,\mathbb{R})$: Bargmann (1947),...

Well known to be a hard problem, and the answer is complicated

G: connected complex reductive group defined over $\mathbb R$

Problem: Describe/Compute/Understand the **Unitary Dual** of $G(\mathbb{R})$:

$$\widehat{G(\mathbb{R})} = \{ ext{irreducible unitary representations of } G(\mathbb{R}) \} / \sim$$

Norm-preserving representations of $G(\mathbb{R})$ on a Hilbert space, modulo the appropriate notion of equivalence

Assumption: You believe this is an interesting question.

Compact groups (Weyl, 1920s), $SL(2,\mathbb{R})$: Bargmann (1947),...

Well known to be a hard problem, and the answer is complicated

Atlas of Lie Groups and Representations (2002): study this with the aid of a computer

Today:

Today:

1) Report on an algorithm to compute the unitary dual

Today:

1) Report on an algorithm to compute the unitary dual (a few words on actually computing it)

Today:

- 1) Report on an algorithm to compute the unitary dual (a few words on actually computing it)
- 2) Progress on a conceptual understanding of the unitary dual: Arthur's conjectures

Today:

- 1) Report on an algorithm to compute the unitary dual (a few words on actually computing it)
- 2) Progress on a conceptual understanding of the unitary dual: Arthur's conjectures (and beyond)

Replace representations of $G(\mathbb{R})$ with (\mathfrak{g}, K) -modules

Replace representations of $G(\mathbb{R})$ with (\mathfrak{g}, K) -modules Cartan classification of real forms: θ (algebraic) involution

Replace representations of $G(\mathbb{R})$ with (\mathfrak{g}, K) -modules Cartan classification of real forms: θ (algebraic) involution $K = G^{\theta}$ (complex);

Replace representations of $G(\mathbb{R})$ with (\mathfrak{g},K) -modules Cartan classification of real forms: θ (algebraic) involution $K=G^{\theta}$ (complex); $K(\mathbb{R})=G(\mathbb{R})^{\theta}$

Replace representations of $G(\mathbb{R})$ with (\mathfrak{g}, K) -modules Cartan classification of real forms: θ (algebraic) involution $K = G^{\theta}$ (complex); $K(\mathbb{R}) = G(\mathbb{R})^{\theta}$ (π, V) vector space; compatible actions of \mathfrak{g}, K

Fix once and for all: Cartan subgroup $H\subset G$, $\mathfrak{h}=\mathsf{Lie}(H)\simeq\mathbb{C}^n$

Fix once and for all: Cartan subgroup $H\subset G$, $\mathfrak{h}=\mathrm{Lie}(H)\simeq \mathbb{C}^n$

 $\gamma \in \mathfrak{h}^*$: defines an infinitesimal character

Fix once and for all: Cartan subgroup $H \subset G$, $\mathfrak{h} = \mathrm{Lie}(H) \simeq \mathbb{C}^n$

 $\gamma \in \mathfrak{h}^*$: defines an infinitesimal character

 $\mathcal{M}_{\gamma} \text{:}\ \, \text{Grothendieck group of virtual character with infinitesimal character}\ \, \gamma$

Fix once and for all: Cartan subgroup $H \subset G$, $\mathfrak{h} = \mathrm{Lie}(H) \simeq \mathbb{C}^n$

 $\gamma \in \mathfrak{h}^*$: defines an infinitesimal character

 $\mathcal{M}_{\gamma} :$ Grothendieck group of virtual character with infinitesimal character γ

 ${\it M}_{\gamma}$ is finite dimensional, spanned by {standard modules} or {irreducible modules}

Fix once and for all: Cartan subgroup $H \subset G$, $\mathfrak{h} = \mathrm{Lie}(H) \simeq \mathbb{C}^n$

 $\gamma \in \mathfrak{h}^*$: defines an infinitesimal character

 $\mathcal{M}_{\gamma} {:}$ Grothendieck group of virtual character with infinitesimal character γ

 M_{γ} is finite dimensional, spanned by {standard modules} or {irreducible modules}

Note: Only *real* infinitesimal character $(\gamma \in X^*(H) \otimes_{\mathbb{R}})$.

Langlands parameters

 $\label{eq:langlands} Langlands + Knapp/Vogan/Zuckerman: \ description \ of \ the \ admissible \ dual$

 $\label{eq:langlands} Langlands + Knapp/Vogan/Zuckerman: \ description \ of \ the \ admissible \ dual$

 $\label{eq:langlands} Langlands + Knapp/Vogan/Zuckerman: \ description \ of \ the \ admissible \ dual$

$$\Gamma = (x, \lambda, \nu)$$
:

 $\label{eq:langlands} Langlands + Knapp/Vogan/Zuckerman: \ description \ of \ the \ admissible \ dual$

$$\Gamma = (x, \lambda, \nu)$$
:

$$x \in X = K \backslash G/B$$
,

 $\label{eq:langlands} Langlands + Knapp/Vogan/Zuckerman: \ description \ of \ the \ admissible \ dual$

$$\Gamma = (x, \lambda, \nu)$$
:

$$x \in X = K \setminus G/B$$
, an explicit finite set $\{x_0, \dots, x_n\}$

 $\label{eq:langlands} Langlands + Knapp/Vogan/Zuckerman: \ description \ of \ the \ admissible \ dual$

$$\Gamma = (x, \lambda, \nu)$$
:

$$x \in X = K \setminus G/B$$
, an explicit finite set $\{x_0, \dots, x_n\}$

$$X \ni x \mapsto a$$
 Borel subalgebra $\mathfrak{b} \supset \mathfrak{h}$ and θ_X (involution of H)

 $\label{eq:langlands} Langlands + Knapp/Vogan/Zuckerman: \ description \ of \ the \ admissible \ dual$

$$\Gamma = (x, \lambda, \nu)$$
:

$$x \in X = K \setminus G/B$$
, an explicit finite set $\{x_0, \dots, x_n\}$

$$X \ni x \mapsto a$$
 Borel subalgebra $\mathfrak{b} \supset \mathfrak{h}$ and θ_X (involution of H)

$$\lambda \in X^*(H) + \rho$$
: character of $H(\mathbb{R})^{ heta_{
ho}}_{
ho}$

 $\label{eq:langlands} Langlands + Knapp/Vogan/Zuckerman: \ description \ of \ the \ admissible \ dual$

$$\Gamma = (x, \lambda, \nu)$$
:

$$x \in X = K \setminus G/B$$
, an explicit finite set $\{x_0, \dots, x_n\}$

$$X \ni x \mapsto a$$
 Borel subalgebra $\mathfrak{b} \supset \mathfrak{h}$ and θ_X (involution of H)

$$\lambda \in X^*(H) + \rho$$
: character of $H(\mathbb{R})^{ heta_{
ho}}_{
ho}$

$$\nu \in X^*(H) \otimes \mathbb{Q}$$
: character of $\mathfrak{h}^{-\theta}$

 $\label{eq:langlands} Langlands + Knapp/Vogan/Zuckerman: \ description \ of \ the \ admissible \ dual$

$$\Gamma = (x, \lambda, \nu)$$
:

$$x \in X = K \setminus G/B$$
, an explicit finite set $\{x_0, \dots, x_n\}$

$$X \ni x \mapsto a$$
 Borel subalgebra $\mathfrak{b} \supset \mathfrak{h}$ and θ_X (involution of H)

$$\lambda \in X^*(H) + \rho$$
: character of $H(\mathbb{R})^{\theta_x}_{\rho}$

$$\nu \in X^*(H) \otimes \mathbb{Q}$$
: character of $\mathfrak{h}^{-\theta}$

Summary:
$$\Gamma = (\text{finite set, vector, rational vector}) \mapsto \widehat{H(\mathbb{R})_{\rho}}$$

$$\gamma \mapsto \mathcal{P}_{\gamma} = \{\Gamma\}$$

$$\gamma \mapsto \mathcal{P}_{\gamma} = \{\Gamma\}$$

$$\Gamma \mapsto I(\Gamma)$$
: a standard module: $I(\Gamma) = \operatorname{Ind}_{MN}^{G}(\pi_{M}(\Gamma))$

```
\gamma \mapsto \mathcal{P}_{\gamma} = \{\Gamma\}
\Gamma \mapsto I(\Gamma): a standard module: I(\Gamma) = \operatorname{Ind}_{MN}^{\mathcal{G}}(\pi_{M}(\Gamma))
\pi_{M}(\Gamma): (relative limit of) discrete series
```

```
\gamma \mapsto \mathcal{P}_{\gamma} = \{\Gamma\}
\Gamma \mapsto I(\Gamma): a standard module: I(\Gamma) = \operatorname{Ind}_{MN}^{G}(\pi_{M}(\Gamma))
\pi_{M}(\Gamma): (relative limit of) discrete series
I(\Gamma) \mapsto J(\Gamma): unique irreducible quotient
```

```
\gamma \mapsto \mathcal{P}_{\gamma} = \{\Gamma\}
\Gamma \mapsto I(\Gamma): a standard module: I(\Gamma) = \operatorname{Ind}_{MN}^{G}(\pi_{M}(\Gamma))
\pi_{M}(\Gamma): (relative limit of) discrete series
I(\Gamma) \mapsto J(\Gamma): unique irreducible quotient
```

$$\widehat{G}_{adm} = \{ J(\Gamma) \mid \gamma \in \mathfrak{h}^*/W, \Gamma \in \mathcal{P}_{\gamma} \}$$

```
\gamma \mapsto \mathcal{P}_{\gamma} = \{\Gamma\}
\Gamma \mapsto I(\Gamma): a standard module: I(\Gamma) = \operatorname{Ind}_{MN}^{G}(\pi_{M}(\Gamma))
\pi_{M}(\Gamma): (relative limit of) discrete series
I(\Gamma) \mapsto J(\Gamma): unique irreducible quotient
```

$$\widehat{\mathsf{G}}_{adm} = \{ \mathit{J}(\Gamma) \mid \gamma \in \mathfrak{h}^* / W, \Gamma \in \mathcal{P}_{\gamma} \}$$

$$\mathcal{M}_{\gamma} = \mathbb{Z}\langle\{I(\Gamma)\}\rangle = \mathbb{Z}\langle\{J(\Gamma)\}\rangle$$

$$\gamma \mapsto \mathcal{P}_{\gamma} = \{\Gamma\}$$
 $\Gamma \mapsto I(\Gamma)$: a standard module: $I(\Gamma) = \operatorname{Ind}_{MN}^{G}(\pi_{M}(\Gamma))$
 $\pi_{M}(\Gamma)$: (relative limit of) discrete series
 $I(\Gamma) \mapsto J(\Gamma)$: unique irreducible quotient

$$\widehat{G}_{adm} = \{ J(\Gamma) \mid \gamma \in \mathfrak{h}^*/W, \Gamma \in \mathcal{P}_{\gamma} \}$$

$$\mathcal{M}_{\gamma} = \mathbb{Z}\langle \{I(\Gamma)\}\rangle = \mathbb{Z}\langle \{J(\Gamma)\}\rangle$$

Change of basis matrix: the Kazhdan-Lusztig-Vogan polynomials $P_{\Lambda,\Gamma},\,Q_{\Lambda,\Gamma}\in\mathbb{Z}[q]$:

$$\gamma \mapsto \mathcal{P}_{\gamma} = \{\Gamma\}$$
 $\Gamma \mapsto I(\Gamma)$: a standard module: $I(\Gamma) = \operatorname{Ind}_{MN}^{G}(\pi_{M}(\Gamma))$
 $\pi_{M}(\Gamma)$: (relative limit of) discrete series
 $I(\Gamma) \mapsto J(\Gamma)$: unique irreducible quotient

$$\widehat{G}_{adm} = \{ J(\Gamma) \mid \gamma \in \mathfrak{h}^*/W, \Gamma \in \mathcal{P}_{\gamma} \}$$

$$\mathcal{M}_{\gamma} = \mathbb{Z}\langle \{I(\Gamma)\}\rangle = \mathbb{Z}\langle \{J(\Gamma)\}\rangle$$

Change of basis matrix: the Kazhdan-Lusztig-Vogan polynomials $P_{\Lambda,\Gamma},\,Q_{\Lambda,\Gamma}\in\mathbb{Z}[q]$:

$$I(\Gamma) = \sum_{\Lambda \in \mathcal{P}_{\gamma}} Q_{\Lambda,\Gamma}(1) J(\Lambda)$$

$$\gamma \mapsto \mathcal{P}_{\gamma} = \{\Gamma\}$$
 $\Gamma \mapsto I(\Gamma)$: a standard module: $I(\Gamma) = \operatorname{Ind}_{MN}^{G}(\pi_{M}(\Gamma))$
 $\pi_{M}(\Gamma)$: (relative limit of) discrete series
 $I(\Gamma) \mapsto J(\Gamma)$: unique irreducible quotient

$$\widehat{G}_{adm} = \{ J(\Gamma) \mid \gamma \in \mathfrak{h}^* / W, \Gamma \in \mathcal{P}_{\gamma} \}$$

$$\mathcal{M}_{\gamma} = \mathbb{Z}\langle \{I(\Gamma)\}\rangle = \mathbb{Z}\langle \{J(\Gamma)\}\rangle$$

Change of basis matrix: the Kazhdan-Lusztig-Vogan polynomials $P_{\Lambda,\Gamma},\,Q_{\Lambda,\Gamma}\in\mathbb{Z}[q]$:

$$I(\Gamma) = \sum_{\Lambda \in \mathcal{P}_{\gamma}} Q_{\Lambda,\Gamma}(1) J(\Lambda)$$
 $J(\Gamma) = \sum_{\Lambda \in \mathcal{P}} (-1)^{\ell(\Lambda) - \ell(\Gamma)} P_{\Lambda,\Gamma}(1) J(\Lambda)$

Hermitian form $\langle \, , \, \rangle$ on (π, V) :

Hermitian form $\langle \, , \, \rangle$ on (π, V) :

$$\langle \pi(X)\vec{v}, \vec{w} \rangle + \langle \vec{v}, \pi(X)\vec{w} \rangle \rangle = 0 \quad (X \in \mathfrak{g}(\mathbb{R}))$$

Hermitian form \langle , \rangle on (π, V) :

$$\langle \pi(X) \vec{v}, \vec{w} \rangle + \langle \vec{v}, \pi(X) \vec{w} \rangle \rangle = 0 \quad (X \in \mathfrak{g}(\mathbb{R}))$$

In terms of $\mathfrak{g}=\mathfrak{g}(\mathbb{C})$:

$$\langle \pi(X)\vec{v}, \vec{w} \rangle + \langle \vec{v}, \pi(\sigma(X))\vec{w} \rangle \rangle = 0 \quad (X \in \mathfrak{g}(\mathbb{C}))$$

Hermitian form \langle , \rangle on (π, V) :

$$\langle \pi(X)\vec{v}, \vec{w} \rangle + \langle \vec{v}, \pi(X)\vec{w} \rangle \rangle = 0 \quad (X \in \mathfrak{g}(\mathbb{R}))$$

In terms of $\mathfrak{g} = \mathfrak{g}(\mathbb{C})$:

$$\langle \pi(X)\vec{v}, \vec{w} \rangle + \langle \vec{v}, \pi(\sigma(X))\vec{w} \rangle \rangle = 0 \quad (X \in \mathfrak{g}(\mathbb{C}))$$

The **Hermitian dual** (representations admitting an invariant Hermitian form) is known (Knapp/Zuckerman)

Hermitian form \langle , \rangle on (π, V) :

$$\langle \pi(X)\vec{v}, \vec{w} \rangle + \langle \vec{v}, \pi(X)\vec{w} \rangle \rangle = 0 \quad (X \in \mathfrak{g}(\mathbb{R}))$$

In terms of $\mathfrak{g} = \mathfrak{g}(\mathbb{C})$:

$$\langle \pi(X)\vec{v}, \vec{w} \rangle + \langle \vec{v}, \pi(\sigma(X))\vec{w} \rangle \rangle = 0 \quad (X \in \mathfrak{g}(\mathbb{C}))$$

The **Hermitian dual** (representations admitting an invariant Hermitian form) is known (Knapp/Zuckerman)

$$\widehat{G}_{disc} \subset \widehat{G}_{temp} \subset \widehat{G}_{u} \subset \widehat{G}_{herm} \subset \widehat{G}_{adm}$$

Restatement of the problem:

Restatement of the problem:

1) Given $\pi \in \widehat{\mathit{G}_{herm}}$ determine if the invariant form is positive definite

Restatement of the problem:

- 1) Given $\pi \in \widehat{G_{herm}}$ determine if the invariant form is positive definite
- 2) For a given $G(\mathbb{R})$, describe the set of all such representations

Restatement of the problem:

- 1) Given $\pi \in \widehat{G_{herm}}$ determine if the invariant form is positive definite
- 2) For a given $G(\mathbb{R})$, describe the set of all such representations How do you compute the signature of a Hermitian form on an infinite dimensional vector space?

Vogan (1980s):
$$\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$$

Vogan (1980s): $\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$

Deform ν to 0. The form is upper semi-continuous;

Vogan (1980s): $\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points

Vogan (1980s): $\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points (at odd levels of the Jantzen filtration),

Vogan (1980s): $\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points (at odd levels of the Jantzen filtration), computed by the KLV polynomials

Vogan (1980s): $\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points (at odd levels of the Jantzen filtration), computed by the KLV polynomials

So:

Vogan (1980s): $\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points (at odd levels of the Jantzen filtration), computed by the KLV polynomials

So: compute the form on $I(x, \lambda, \nu)$ by induction, reducing to the case $\nu = 0 \leftrightarrow$ tempered (unitary)

Vogan (1980s): $\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points (at odd levels of the Jantzen filtration), computed by the KLV polynomials

So: compute the form on $I(x, \lambda, \nu)$ by induction, reducing to the case $\nu = 0 \leftrightarrow$ tempered (unitary)

Major fly in this ointment:

Vogan (1980s): $\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points (at odd levels of the Jantzen filtration), computed by the KLV polynomials

So: compute the form on $I(x, \lambda, \nu)$ by induction, reducing to the case $\nu = 0 \leftrightarrow$ tempered (unitary)

Major fly in this ointment:

1) $I(\Gamma)$ might not have an invariant Hermitian form

Vogan (1980s): $\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points (at odd levels of the Jantzen filtration), computed by the KLV polynomials

So: compute the form on $I(x, \lambda, \nu)$ by induction, reducing to the case $\nu = 0 \leftrightarrow$ tempered (unitary)

Major fly in this ointment:

- 1) $I(\Gamma)$ might not have an invariant Hermitian form
- 2) The Hermitian form on $I(\Gamma)$ isn't canonical

Vogan: computing Hermitian forms

Vogan (1980s):
$$\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points (at odd levels of the Jantzen filtration), computed by the KLV polynomials

So: compute the form on $I(x, \lambda, \nu)$ by induction, reducing to the case $\nu = 0 \leftrightarrow$ tempered (unitary)

Major fly in this ointment:

- 1) $I(\Gamma)$ might not have an invariant Hermitian form
- 2) The Hermitian form on $I(\Gamma)$ isn't canonical

Example: An irreducible principle series of $SL(2,\mathbb{R})$ with odd K-types and $\nu \in \mathbb{R}, \nu \neq 0$:

Vogan: computing Hermitian forms

Vogan (1980s):
$$\Gamma = (x, \lambda, \nu) \mapsto I(x, \lambda, \nu)$$

Deform ν to 0. The form is upper semi-continuous; computable sign changes at a finite number of points (at odd levels of the Jantzen filtration), computed by the KLV polynomials

So: compute the form on $I(x, \lambda, \nu)$ by induction, reducing to the case $\nu = 0 \leftrightarrow$ tempered (unitary)

Major fly in this ointment:

- 1) $I(\Gamma)$ might not have an invariant Hermitian form
- 2) The Hermitian form on $I(\Gamma)$ isn't canonical

Example: An irreducible principle series of $SL(2,\mathbb{R})$ with odd K-types and $\nu \in \mathbb{R}, \nu \neq 0$:

2 lowest K-types ± 1 , any invariant form has opposite signs on them.

$$G(\mathbb{R})=G(\mathbb{C})^{\sigma};$$

$$\langle \pi(X)\vec{v}, \vec{w} \rangle + \langle \vec{v}, \pi(\sigma(X))\vec{w} \rangle = 0 \quad (X \in \mathfrak{g})$$

$$G(\mathbb{R})=G(\mathbb{C})^{\sigma};$$

$$\langle \pi(X)\vec{v}, \vec{w} \rangle + \langle \vec{v}, \pi(\sigma(X))\vec{w} \rangle = 0 \quad (X \in \mathfrak{g})$$

Modify this and use σ_c instead, where $G(\mathbb{C})^{\sigma_c}$ is compact.

$$G(\mathbb{R}) = G(\mathbb{C})^{\sigma};$$

$$\langle \pi(X)\vec{v}, \vec{w} \rangle_{c} + \langle \vec{v}, \pi(\sigma_{c}(X))\vec{w} \rangle_{c} = 0 \quad (X \in \mathfrak{g})$$

Modify this and use σ_c instead, where $G(\mathbb{C})^{\sigma_c}$ is compact. This is the c-Hermitian form.

$$G(\mathbb{R}) = G(\mathbb{C})^{\sigma};$$

$$\langle \pi(X)\vec{v}, \vec{w} \rangle_{c} + \langle \vec{v}, \pi(\sigma_{c}(X))\vec{w} \rangle_{c} = 0 \quad (X \in \mathfrak{g})$$

Modify this and use σ_c instead, where $G(\mathbb{C})^{\sigma_c}$ is compact. This is the c-Hermitian form.

What?

$$G(\mathbb{R})=G(\mathbb{C})^{\sigma};$$

$$\langle \pi(X)\vec{v}, \vec{w} \rangle_c + \langle \vec{v}, \pi(\sigma_c(X))\vec{w} \rangle_c = 0 \quad (X \in \mathfrak{g})$$

Modify this and use σ_c instead, where $G(\mathbb{C})^{\sigma_c}$ is compact. This is the *c*-Hermitian form.

What?

Does this make sense?

$$G(\mathbb{R})=G(\mathbb{C})^{\sigma};$$

$$\langle \pi(X)\vec{v}, \vec{w} \rangle_c + \langle \vec{v}, \pi(\sigma_c(X))\vec{w} \rangle_c = 0 \quad (X \in \mathfrak{g})$$

Modify this and use σ_c instead, where $G(\mathbb{C})^{\sigma_c}$ is compact. This is the c-Hermitian form.

What?

Does this make sense?

Theorem: Adams/Trapa/van Leeuwen/Vogan:

$$G(\mathbb{R})=G(\mathbb{C})^{\sigma};$$

$$\langle \pi(X)\vec{v}, \vec{w} \rangle_c + \langle \vec{v}, \pi(\sigma_c(X))\vec{w} \rangle_c = 0 \quad (X \in \mathfrak{g})$$

Modify this and use σ_c instead, where $G(\mathbb{C})^{\sigma_c}$ is compact. This is the c-Hermitian form.

What?

Does this make sense?

Theorem: Adams/Trapa/van Leeuwen/Vogan:

1) Every irreducible representation admits a canonical invariant c-Hermitian form (positive on the lowest K-types)

$$G(\mathbb{R})=G(\mathbb{C})^{\sigma};$$

$$\langle \pi(X)\vec{v}, \vec{w} \rangle_c + \langle \vec{v}, \pi(\sigma_c(X))\vec{w} \rangle_c = 0 \quad (X \in \mathfrak{g})$$

Modify this and use σ_c instead, where $G(\mathbb{C})^{\sigma_c}$ is compact. This is the c-Hermitian form.

What?

Does this make sense?

Theorem: Adams/Trapa/van Leeuwen/Vogan:

- 1) Every irreducible representation admits a canonical invariant c-Hermitian form (positive on the lowest K-types)
- 2) There is an algorithm to compute the Hermitian form in terms of the c-Hermitian form.

$$G(\mathbb{R})=G(\mathbb{C})^{\sigma};$$

Modify this and use σ_c instead, where $G(\mathbb{C})^{\sigma_c}$ is compact. This is the c-Hermitian form.

What?

Does this make sense?

Theorem: Adams/Trapa/van Leeuwen/Vogan:

- 1) Every irreducible representation admits a canonical invariant *c*-Hermitian form (positive on the lowest *K*-types)
- 2) There is an algorithm to compute the Hermitian form in terms of the c-Hermitian form.

So: Write $I_c(\Gamma)$, $J_c(\Gamma)$ for these representations, equipped with their canonical c-Hermitian forms

1980s: Schmid and Vilonen: every representation has a canonical Hodge filtration

1980s: Schmid and Vilonen: every representation has a canonical Hodge filtration (Saito, mixed Hodge modules).

1980s: Schmid and Vilonen: every representation has a canonical Hodge filtration (Saito, mixed Hodge modules).

Related in some (intriguing but complicated) way to the (non-canonical!) invariant Hermitian form

1980s: Schmid and Vilonen: every representation has a canonical Hodge filtration (Saito, mixed Hodge modules).

Related in some (intriguing but complicated) way to the (non-canonical!) invariant Hermitian form

2011: Schmid and Vilonen: a precise conjecture relating the Hodge filtration to the canonical *c*-Hermitian form.

1980s: Schmid and Vilonen: every representation has a canonical Hodge filtration (Saito, mixed Hodge modules).

Related in some (intriguing but complicated) way to the (non-canonical!) invariant Hermitian form

2011: Schmid and Vilonen: a precise conjecture relating the Hodge filtration to the canonical *c*-Hermitian form.

2020: Based on some conjectures about the Hodge filtration, we formulated an algorithm to compute the Hodge filtration, and implemented this in **Atlas**.

1980s: Schmid and Vilonen: every representation has a canonical Hodge filtration (Saito, mixed Hodge modules).

Related in some (intriguing but complicated) way to the (non-canonical!) invariant Hermitian form

2011: Schmid and Vilonen: a precise conjecture relating the Hodge filtration to the canonical *c*-Hermitian form.

2020: Based on some conjectures about the Hodge filtration, we formulated an algorithm to compute the Hodge filtration, and implemented this in **Atlas**.

2022: Dougal Davis and Kari Vilonen proved a (slightly) weak version of the conjecture.

1980s: Schmid and Vilonen: every representation has a canonical Hodge filtration (Saito, mixed Hodge modules).

Related in some (intriguing but complicated) way to the (non-canonical!) invariant Hermitian form

2011: Schmid and Vilonen: a precise conjecture relating the Hodge filtration to the canonical *c*-Hermitian form.

2020: Based on some conjectures about the Hodge filtration, we formulated an algorithm to compute the Hodge filtration, and implemented this in **Atlas**.

2022: Dougal Davis and Kari Vilonen proved a (slightly) weak version of the conjecture.

Idea: the Hodge filtration (parametrized by \mathbb{Z}) reduced mod 2 gives the c-Hermitian form (a $\mathbb{Z}/2\mathbb{Z}$ object)

Restriction to *K*:

Restriction to *K*:

$$\pi_{\mathcal{K}} \simeq \sum_{\mu \in \widehat{\mathcal{K}}} \mathsf{m}(\mu) \mu$$

Restriction to *K*:

$$\pi_{\mathcal{K}} \simeq \sum_{\mu \in \widehat{\mathcal{K}}} \mathsf{m}(\mu) \mu$$

Parametrize K?

Restriction to *K*:

$$\pi_{\mathcal{K}} \simeq \sum_{\mu \in \widehat{\mathcal{K}}} \mathsf{m}(\mu)\mu$$

Parametrize K? **Problem**: K may be disconnected

Restriction to *K*:

$$\pi_{K} \simeq \sum_{\mu \in \widehat{K}} m(\mu)\mu$$

Parametrize K? **Problem**: K may be disconnected

Definition: a tempiric representation is one which is *tempered* and has *real infinitesimal character*.

Restriction to *K*:

$$\pi_{\mathcal{K}} \simeq \sum_{\mu \in \widehat{\mathcal{K}}} m(\mu) \mu$$

Parametrize K? Problem: K may be disconnected

Definition: a tempiric representation is one which is tempered and has real infinitesimal character.

Precisely the representations $J(\Gamma) = I(\Gamma)$ with $\Gamma = (x, \lambda, 0)$.

Restriction to *K*:

$$\pi_{\mathcal{K}} \simeq \sum_{\mu \in \widehat{\mathcal{K}}} m(\mu) \mu$$

Parametrize K? **Problem**: K may be disconnected

Definition: a tempiric representation is one which is tempered and has real infinitesimal character.

Precisely the representations $J(\Gamma) = I(\Gamma)$ with $\Gamma = (x, \lambda, 0)$.

Theorem: (Vogan)

Restriction to *K*:

$$\pi_{K} \simeq \sum_{\mu \in \widehat{K}} m(\mu)\mu$$

Parametrize K? Problem: K may be disconnected

Definition: a tempiric representation is one which is tempered and has real infinitesimal character.

Precisely the representations $J(\Gamma) = I(\Gamma)$ with $\Gamma = (x, \lambda, 0)$.

Theorem: (Vogan)

1) {tempiric representations} $\leftrightarrow \widehat{K}$

Restriction to *K*:

$$\pi_{\mathsf{K}} \simeq \sum_{\mu \in \widehat{\mathsf{K}}} \mathsf{m}(\mu)\mu$$

Parametrize K? Problem: K may be disconnected

Definition: a tempiric representation is one which is tempered and has real infinitesimal character.

Precisely the representations $J(\Gamma) = I(\Gamma)$ with $\Gamma = (x, \lambda, 0)$.

Theorem: (Vogan)

1) {tempiric representations} $\leftrightarrow \widehat{\mathcal{K}}$ ($\pi \mapsto$ the unique lowest \mathcal{K} -type)

Restriction to *K*:

$$\pi_{\mathsf{K}} \simeq \sum_{\mu \in \widehat{\mathsf{K}}} \mathsf{m}(\mu)\mu$$

Parametrize K? **Problem**: K may be disconnected

Definition: a tempiric representation is one which is tempered and has real infinitesimal character.

Precisely the representations $J(\Gamma) = I(\Gamma)$ with $\Gamma = (x, \lambda, 0)$.

Theorem: (Vogan)

- 1) {tempiric representations} $\leftrightarrow \widehat{\mathcal{K}}$ ($\pi \mapsto$ the unique lowest \mathcal{K} -type)
- 2) If π is any representation then $\pi|_K \simeq \sum_{i=1}^n a_i \pi_i|_K$ (a unique finite formula)

Consider
$$\mathbb{Z}[s]$$
 ($s^2 = 1$)

Consider $\mathbb{Z}[s]$ $(s^2 = 1)$ $\mu \in \widehat{K}$, $(a + bs)\mu$ means:

Consider $\mathbb{Z}[s]$ ($s^2 = 1$)

 $\mu\in\widehat{K}$, $(a+bs)\mu$ means: a-copies of μ with the positive form, and b copies with the negative one

Consider $\mathbb{Z}[s]$ ($s^2 = 1$)

 $\mu\in\widehat{K}$, $(a+bs)\mu$ means: a-copies of μ with the positive form, and b copies with the negative one

Theorem (Vogan): There is a unique formula

Consider $\mathbb{Z}[s]$ ($s^2 = 1$)

 $\mu\in\widehat{K}$, $(a+bs)\mu$ means: a-copies of μ with the positive form, and b copies with the negative one

Theorem (Vogan): There is a unique formula

$$\pi|_K \simeq \sum_{i=1}^n (a_i + b_i s) I_i|_K \quad (I_i ext{ tempiric})$$

Vogan's algorithm: c-Hermitian form version

1) Deform $I_c(x,\lambda,\nu)$ to $I_c(x,\lambda,0)$, keeping track of sign changes along the way.

Vogan's algorithm: c-Hermitian form version

1) Deform $I_c(x,\lambda,\nu)$ to $I_c(x,\lambda,0)$, keeping track of sign changes along the way. There will be new terms involving smaller parameters

Vogan's algorithm: c-Hermitian form version

1) Deform $I_c(x,\lambda,\nu)$ to $I_c(x,\lambda,0)$, keeping track of sign changes along the way. There will be new terms involving smaller parameters \mapsto an inductive algorithm.

1) Deform $I_c(x,\lambda,\nu)$ to $I_c(x,\lambda,0)$, keeping track of sign changes along the way. There will be new terms involving smaller parameters \mapsto an inductive algorithm.

Main step: let $I_c(t) = I_c(x, \lambda, t\nu)$

1) Deform $I_c(x,\lambda,\nu)$ to $I_c(x,\lambda,0)$, keeping track of sign changes along the way. There will be new terms involving smaller parameters \mapsto an inductive algorithm.

Main step: let $I_c(t) = I_c(x, \lambda, t\nu)$

Algorithm: (deformation of the *c*-Hermitian form)

1) Deform $I_c(x,\lambda,\nu)$ to $I_c(x,\lambda,0)$, keeping track of sign changes along the way. There will be new terms involving smaller parameters \mapsto an inductive algorithm.

Main step: let $I_c(t) = I_c(x, \lambda, t\nu)$

Algorithm: (deformation of the *c*-Hermitian form)

$$egin{aligned} I_c((1+\epsilon)t &= I_c((1-\epsilon)t) - \sum_{ au < \gamma} s^{\ell_0(\gamma) - \ell_0(au)} \ &st \left[\sum_{ au < \delta < \gamma} (-1)^{\ell(\delta) - \ell(au)} s^{\ell(\gamma) - \ell(\delta)} P_{ au, \delta}(s) Q_{\delta, \gamma}(s)
ight] I_c(\delta) \end{aligned}$$

By induction, get an algorithm:

$$I_c(x,\lambda,
u) = \sum_{i=1}^n v_i I_c(\gamma_i) \quad (v_i \in \mathbb{Z}[s], I_c(\gamma_i) \text{ tempiric})$$

By induction, get an algorithm:

$$I_c(x,\lambda,
u) = \sum_{i=1}^n v_i I_c(\gamma_i) \quad (v_i \in \mathbb{Z}[s], I_c(\gamma_i) \text{ tempiric})$$

Also, recall there is a formula:

By induction, get an algorithm:

$$I_c(x,\lambda,
u) = \sum_{i=1}^n v_i I_c(\gamma_i) \quad (v_i \in \mathbb{Z}[s], I_c(\gamma_i) \text{ tempiric})$$

Also, recall there is a formula:

$$J(\Gamma) = \sum_{\Lambda \in \mathcal{P}_{\gamma}} (-1)^{\ell(\Lambda) - \ell(\Gamma)} P_{\Lambda,\Gamma}(1) J(\Lambda)$$

By induction, get an algorithm:

$$I_c(x,\lambda,
u) = \sum_{i=1}^n v_i I_c(\gamma_i) \quad (v_i \in \mathbb{Z}[s], I_c(\gamma_i) \text{ tempiric})$$

Also, recall there is a formula:

$$J(\Gamma) = \sum_{\Lambda \in \mathcal{P}_{\gamma}} (-1)^{\ell(\Lambda) - \ell(\Gamma)} P_{\Lambda,\Gamma}(1) J(\Lambda)$$

There is a refinement of this formula to the *c*-form on $J(\Gamma)$:

By induction, get an algorithm:

$$I_c(x,\lambda,
u) = \sum_{i=1}^n v_i I_c(\gamma_i) \quad (v_i \in \mathbb{Z}[s], I_c(\gamma_i) \text{ tempiric})$$

Also, recall there is a formula:

$$J(\Gamma) = \sum_{\Lambda \in \mathcal{P}_{\gamma}} (-1)^{\ell(\Lambda) - \ell(\Gamma)} P_{\Lambda,\Gamma}(1) J(\Lambda)$$

There is a refinement of this formula to the c-form on $J(\Gamma)$:

$$J_c(\Gamma) = \sum_{\Lambda \in \mathcal{P}_{\gamma}} (-1)^{\ell_0(\Lambda) - \ell_0(\Gamma)} P_{\Lambda,\Gamma}(s) J(\Lambda)$$

Conclusion: The previous discussion sketches an algorithm to compute

$$J_c(\gamma) = \sum_{i=1}^n z_i I_c(x_i, \lambda_i, 0) \quad (z_i \in \mathbb{Z}[s])$$

Conclusion: The previous discussion sketches an algorithm to compute

$$J_c(\gamma) = \sum_{i=1}^n z_i I_c(x_i, \lambda_i, 0) \quad (z_i \in \mathbb{Z}[s])$$

RHS: tempiric \Rightarrow unitary.

Conclusion: The previous discussion sketches an algorithm to compute

$$J_c(\gamma) = \sum_{i=1}^n z_i I_c(x_i, \lambda_i, 0) \quad (z_i \in \mathbb{Z}[s])$$

RHS: tempiric⇒ unitary.

This can be converted to a formula

$$J(\gamma) = \sum_{i=1}^{n} z_i' I(x_i, \lambda_i, 0) \quad (z_i' \in \mathbb{Z}[s])$$

Conclusion: The previous discussion sketches an algorithm to compute

$$J_c(\gamma) = \sum_{i=1}^n z_i I_c(x_i, \lambda_i, 0) \quad (z_i \in \mathbb{Z}[s])$$

RHS: tempiric⇒ unitary.

This can be converted to a formula

$$J(\gamma) = \sum_{i=1}^n z_i' I(x_i, \lambda_i, 0) \quad (z_i' \in \mathbb{Z}[s])$$

$$J(\gamma)$$
 is unitary \Leftrightarrow all $z_i' \in \mathbb{Z}$ $(z_i' = a_i + 0 * s)$

Caveats: We're eliding some technical points.

Caveats: We're eliding some technical points.

(Minor): we can multiply a Hermitian form by -1, which amounts to replacing a+bs with b+as.

Caveats: We're eliding some technical points.

(Minor): we can multiply a Hermitian form by -1, which amounts to replacing a + bs with b + as.

The passage $I_c(\gamma) \mapsto I(\gamma)$ is easy in the equal rank case.

Caveats: We're eliding some technical points.

(Minor): we can multiply a Hermitian form by -1, which amounts to replacing a + bs with b + as.

The passage $I_c(\gamma) \mapsto I(\gamma)$ is easy in the equal rank case. In general: a (long and painful) digression about twisted KLV polynomials.

Caveats: We're eliding some technical points.

(Minor): we can multiply a Hermitian form by -1, which amounts to replacing a + bs with b + as.

The passage $I_c(\gamma) \mapsto I(\gamma)$ is easy in the equal rank case. In general: a (long and painful) digression about twisted KLV polynomials.

Know the Hermitian form on tempiric representations (positive definite).

Caveats: We're eliding some technical points.

(Minor): we can multiply a Hermitian form by -1, which amounts to replacing a + bs with b + as.

The passage $I_c(\gamma) \mapsto I(\gamma)$ is easy in the equal rank case. In general: a (long and painful) digression about twisted KLV polynomials.

Know the Hermitian form on tempiric representations (positive definite). (Strangely): don't (a priori) know the c-form.

So: we know how to determine if a single representation is unitary.

So: we know how to determine if a single representation is unitary. The whole unitary dual?

So: we know how to determine if a single representation is unitary. The whole unitary dual?

Example: The spherical unitary dual of $G_2(\mathbb{R})$; $\gamma = J(x, \rho, \nu)$ with $\nu \in \mathbb{R}^2$:

So: we know how to determine if a single representation is unitary. The whole unitary dual?

Example: The spherical unitary dual of $G_2(\mathbb{R})$; $\gamma = J(x, \rho, \nu)$ with $\nu \in \mathbb{R}^2$:

The fundamental parallelepiped (FPP) is the set

$$\{\gamma \in X^*(H)_{\mathbb{R}} \mid 0 \le \langle \gamma, {}^{\lor} \alpha \rangle \le 1, {}^{\lor} \alpha \text{ simple} \}$$

The fundamental parallelepiped (FPP) is the set

$$\{\gamma \in X^*(H)_{\mathbb{R}} \mid 0 \le \langle \gamma, {}^{\vee} \alpha \rangle \le 1, {}^{\vee} \alpha \text{ simple} \}$$

Union of facets, dimension $0, 1, \ldots, rank(G)$.

The fundamental parallelepiped (FPP) is the set

$$\{\gamma \in X^*(H)_{\mathbb{R}} \mid 0 \le \langle \gamma, {}^{\lor} \alpha \rangle \le 1, {}^{\lor} \alpha \text{ simple} \}$$

Union of facets, dimension $0, 1, \ldots, \operatorname{rank}(G)$. Closure of the union of $|W(G)|/|Z_{sc}|$ alcoves of the affine Weyl group.

The fundamental parallelepiped (FPP) is the set

$$\{\gamma \in X^*(H)_{\mathbb{R}} \mid 0 \le \langle \gamma, {}^{\lor} \alpha \rangle \le 1, {}^{\lor} \alpha \text{ simple} \}$$

Union of facets, dimension $0, 1, \ldots, \text{rank}(G)$. Closure of the union of $|W(G)|/|Z_{sc}|$ alcoves of the affine Weyl group.

$$\Gamma = (x, \lambda, \nu), \ \pi = J(\Gamma)$$

The fundamental parallelepiped (FPP) is the set

$$\{\gamma \in X^*(H)_{\mathbb{R}} \mid 0 \leq \langle \gamma, {}^{\vee}\alpha \rangle \leq 1, {}^{\vee}\alpha \text{ simple} \}$$

Union of facets, dimension $0, 1, \ldots, \operatorname{rank}(G)$. Closure of the union of $|W(G)|/|Z_{sc}|$ alcoves of the affine Weyl group.

$$\Gamma = (x, \lambda, \nu)$$
, $\pi = J(\Gamma)$ infinitesimal character:

The fundamental parallelepiped (FPP) is the set

$$\{\gamma \in X^*(H)_{\mathbb{R}} \mid 0 \leq \langle \gamma, \, {}^{\vee}\alpha \rangle \leq 1, \, {}^{\vee}\alpha \text{ simple} \}$$

Union of facets, dimension $0, 1, \ldots, \text{rank}(G)$. Closure of the union of $|W(G)|/|Z_{sc}|$ alcoves of the affine Weyl group.

 $\Gamma = (x, \lambda, \nu), \ \pi = J(\Gamma)$ infinitesimal character:

$$\gamma_{\pi} = \frac{(1+\theta_{x})\lambda}{2} + \frac{(1-\theta_{x})\nu}{2}$$

The fundamental parallelepiped (FPP) is the set

$$\{\gamma \in X^*(H)_{\mathbb{R}} \mid 0 \leq \langle \gamma, \, {}^{\vee}\alpha \rangle \leq 1, \, {}^{\vee}\alpha \text{ simple} \}$$

Union of facets, dimension $0, 1, \ldots, \operatorname{rank}(G)$. Closure of the union of $|W(G)|/|Z_{sc}|$ alcoves of the affine Weyl group.

 $\Gamma = (x, \lambda, \nu)$, $\pi = J(\Gamma)$ infinitesimal character:

$$\gamma_{\pi} = \frac{(1+\theta_{\mathsf{x}})\lambda}{2} + \frac{(1-\theta_{\mathsf{x}})\nu}{2}$$

Definition: The FPP unitary dual is the set of irreducible unitary representations π such that the infinitesimal character γ_{π} is in the FPP.

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan)

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan) Suppose π is an irreducible representation, γ_{π} not in the FPP.

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan) Suppose π is an irreducible representation, γ_{π} not in the FPP. Then there is

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan) Suppose π is an irreducible representation, γ_{π} not in the FPP. Then there is

i) θ -stable parabolic Q = LU

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan) Suppose π is an irreducible representation, γ_{π} not in the FPP. Then there is

- i) θ -stable parabolic Q = LU
- ii) irreducible π_L of L

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan) Suppose π is an irreducible representation, γ_{π} not in the FPP. Then there is

- i) θ -stable parabolic Q = LU
- ii) irreducible π_L of L

(both given explicitly) such that

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan) Suppose π is an irreducible representation, γ_{π} not in the FPP. Then there is

- i) θ -stable parabolic Q = LU
- ii) irreducible π_L of L

(both given explicitly) such that

1)
$$\pi = \mathsf{CohInd}_Q^\mathsf{G}(\pi_L)$$

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan) Suppose π is an irreducible representation, γ_{π} not in the FPP. Then there is

- i) θ -stable parabolic Q = LU
- ii) irreducible π_L of L

(both given explicitly) such that

- 1) $\pi = \mathsf{CohInd}_Q^G(\pi_L)$
- 2) π is unitary $\Leftrightarrow \pi_L$ is unitary.

Theorem: (Davis/Mason-Brown, proof of a conjecture of Vogan) Suppose π is an irreducible representation, γ_{π} not in the FPP. Then there is

- i) θ -stable parabolic Q = LU
- ii) irreducible π_L of L

(both given explicitly) such that

- $1) \; \pi = \mathsf{CohInd}_Q^{\mathsf{G}}(\pi_L)$
- 2) π is unitary $\Leftrightarrow \pi_L$ is unitary.

("weakly fair range")

Remark: The set of pairs (x, λ) such that there exists ν with (x, λ, ν) in the FPP is a finite set.

Remark: The set of pairs (x, λ) such that there exists ν with (x, λ, ν) in the FPP is a finite set.

Facet decomposition of $\nu's$: unitarity is constant on each facet.

Remark: The set of pairs (x, λ) such that there exists ν with (x, λ, ν) in the FPP is a finite set.

Facet decomposition of $\nu's$: unitarity is constant on each facet.

For each (x, λ) there are a finite number of facets to check.

Remark: The set of pairs (x, λ) such that there exists ν with (x, λ, ν) in the FPP is a finite set.

Facet decomposition of $\nu's$: unitarity is constant on each facet.

For each (x, λ) there are a finite number of facets to check.

Conclusion: Calculating the FPP unitary dual is a finite problem:

Remark: The set of pairs (x, λ) such that there exists ν with (x, λ, ν) in the FPP is a finite set.

Facet decomposition of $\nu's$: unitarity is constant on each facet.

For each (x, λ) there are a finite number of facets to check.

Conclusion: Calculating the FPP unitary dual is a finite problem: check unitarity for one representation in each of (finitely many) facets for each (x, λ) .

Remark: The set of pairs (x, λ) such that there exists ν with (x, λ, ν) in the FPP is a finite set.

Facet decomposition of $\nu's$: unitarity is constant on each facet.

For each (x, λ) there are a finite number of facets to check.

Conclusion: Calculating the FPP unitary dual is a finite problem: check unitarity for one representation in each of (finitely many) facets for each (x, λ) .

Together with the reduction provided by the FPP Theorem this gives a description of the unitary dual.

Fix (x, λ) .

Fix (x, λ) .

The unitary dual is a closed set in the Fell topology.

Fix (x, λ) .

The unitary dual is a closed set in the Fell topology. This implies that the finite set of facets in the FPP has a natural topology, and the FPP set is closed.

Fix (x, λ) .

The unitary dual is a closed set in the Fell topology. This implies that the finite set of facets in the FPP has a natural topology, and the FPP set is closed.

Fix
$$(x, \lambda)$$
.

The unitary dual is a closed set in the Fell topology. This implies that the finite set of facets in the FPP has a natural topology, and the FPP set is closed.

Note: The pictures for different (x, λ) interact in a complicated way.

Spherical representations of E_8

Here is a graph of the closure relations among the 9,282 spherical unitary representations of $\it E_8$ (split)

G complex, connected, reductive, $\theta \in Aut(G)$, $\theta^2 = 1, K, G(\mathbb{R})$

 ${\mathcal G}$ complex, connected, reductive, $\theta\in {\sf Aut}({\mathcal G}),\ \theta^2=1,{\mathcal K},{\mathcal G}({\mathbb R})$

Definition: $\widehat{G}_{\mathsf{FPP}} = \{ \pi \in \widehat{G(\mathbb{R})} \mid \gamma_{\pi} \in \mathsf{FPP} \}$

G complex, connected, reductive, $\theta \in Aut(G)$, $\theta^2 = 1, K, G(\mathbb{R})$

Definition: $\widehat{G}_{\mathsf{FPP}} = \{ \pi \in \widehat{G(\mathbb{R})} \mid \gamma_{\pi} \in \mathsf{FPP} \}$

Definition: $Q = Q(G, \theta) = \{\theta$ -stable parabolics $Q = LU \subset G\}/K$

G complex, connected, reductive, $\theta \in Aut(G)$, $\theta^2 = 1, K, G(\mathbb{R})$

Definition: $\widehat{G}_{\mathsf{FPP}} = \{ \pi \in \widehat{G(\mathbb{R})} \mid \gamma_{\pi} \in \mathsf{FPP} \}$

Definition: $Q = Q(G, \theta) = \{\theta \text{-stable parabolics } Q = LU \subset G\}/K$

Theorem:

$$\widehat{G(\mathbb{R})} = \cup_{Q \in \mathcal{Q}} \mathsf{CohInd}_Q^G(\widehat{L(\mathbb{R})_{\mathsf{FPP}}})$$

G complex, connected, reductive, $\theta \in Aut(G)$, $\theta^2 = 1, K, G(\mathbb{R})$

Definition: $\widehat{G}_{\mathsf{FPP}} = \{ \pi \in \widehat{G(\mathbb{R})} \mid \gamma_{\pi} \in \mathsf{FPP} \}$

Definition: $Q = Q(G, \theta) = \{\theta \text{-stable parabolics } Q = LU \subset G\}/K$

Theorem:

$$\widehat{G(\mathbb{R})} = \cup_{Q \in \mathcal{Q}} \mathsf{CohInd}_Q^G(\widehat{L(\mathbb{R})_{\mathsf{FPP}}})$$

The FPP has a finite facet decomposition; unitarity is constant on facets; there is a finite calculation to compute $\widehat{L(\mathbb{R})_{\text{FPP}}}$ for each of the (finitely many) Q.

Some computer results

Groups up to rank 6 are quite fast on a laptop. . .

group	#	time	group	#	time	group	#	time
su(2)	1	0.000	sl(2,R)	7	0.007	su(3)	1	0.000
su(2,1)	20	0.015	sl(3,R)	9	0.014	so(5)	1	0.000
so(4,1)	12	0.024	so(3,2)	46	0.044	g2	1	0.000
g2(R)	60	0.039	su(4)	1	0.000	su(3,1)	40	0.036
su(2,2)	126	0.072	sl(2,H)	8	0.020	sl(4,R)	47	0.067
so(7)	1	0.000	so(6,1)	17	0.069	so(5,2)	129	0.349
so(4,3)	207	1.029	sp(3)	1	0.001	sp(2,1)	33	0.202
sp(6,R)	319	1.330	su(5)	1	0.000	su(4,1)	67	0.338
su(3,2)	458	1.985	sl(5,R)	66	0.513	so(9)	1	0.001
so(8,1)	22	0.316	so(7,2)	231	1.682	so(6,3)	668	5.029
so(5,4)	1244	13.061	sp(4)	1	0.000	sp(3,1)	66	0.665
sp(2,2)	252	1.542	sp(8,R)	2043	17.548	so(8)	1	0.001
so(6,2)	225	1.286	so*(8)[0,1]	225	1.216	so*(8)[1,0]	224	1.300
so(4,4)	1062	5.259	so(7,1)	11	0.166	so(5,3)	215	1.993
f4	1	0.000	f4(so(9))	51	0.746	f4(R)	1864	39.99
su(6)	1	0.000	su(5,1)	101	0.760	su(4,2)	1243	7.609
su(3,3)	2786	11.500	sl(3,H)	37	0.409	sl(6,R)	286	3.569
so(11)	1	0.001	so(10,1)	27	0.897	so(9,2)	352	4.871
so(8,3)	1376	19.230	so(7,4)	5094	108.205	so(6,5)	6485	172.78
sp(5)	1	0.007	sp(4,1)	111	2.167	sp(3,2)	907	14.03
sp(10,R)	13768	295.383	so(10)	1	0.008	so(8,2)	343	3.149
so*(12)[1,0]	6305	142.027	so*(12)[0,1]	6413	114.670	so(8,4)	10365	334.10
so(6,6)	30309	912.176	so(11,1)	17	1.394	so(9,3)	1124	35.93
so(7,5)	8427	544.170	e6	1	0.052	e6(so(10).u(1))	3413	98.84
e6(q)	19831	648.611	e6(f4)	58	1.918	e6(R)	2217	98.26
su(8)	1	0.001	su(7,1)	190	4.614	su(6,2)	5242	109.93
su(5,3)	37314	836.892	su(4,4)	70237	1137.030	sl(4,H)	221	5.268
sl(8,R)	1775	121.184	so(15)	1	0.013	so(14,1)	37	9.604
so(13,2)	651	40.589	so(12,3)	3700	216.952	so(11,4)	24725	3584.4
so(10,5)	74867	12576.352	so(9,6)	194538	90513.295	sp(7)	1	0.002
sp(6,1)	237	19.414	sp(5,2)	5389	495.628	sp(4,3)	24722	3007.4

We've done $E_7(split)$: \sim 16 hours on a laptop, or 1 hour on a parallel machine.

We've done $E_7(split)$: ~ 16 hours on a laptop, or 1 hour on a parallel machine.

 E_8 : Steve Miller computed the FPP unitary set for $E_8(split)$.

We've done $E_7(split)$: \sim 16 hours on a laptop, or 1 hour on a parallel machine.

 E_8 : Steve Miller computed the FPP unitary set for $E_8(split)$.

Answer: 3,075,281 unitary representations in the FPP.

We've done $E_7(split)$: \sim 16 hours on a laptop, or 1 hour on a parallel machine.

 E_8 : Steve Miller computed the FPP unitary set for $E_8(split)$.

Answer: 3,075,281 unitary representations in the FPP.

We have checked *independently* that these representations are indeed unitary.

We've done $E_7(split)$: \sim 16 hours on a laptop, or 1 hour on a parallel machine.

 E_8 : Steve Miller computed the FPP unitary set for $E_8(split)$.

Answer: 3,075,281 unitary representations in the FPP.

We have checked *independently* that these representations are indeed unitary.

Now: check all the remaining representations are not unitary (i.e. we haven't missed anything).

We've done $E_7(split)$: ~ 16 hours on a laptop, or 1 hour on a parallel machine.

 E_8 : Steve Miller computed the FPP unitary set for $E_8(split)$.

Answer: 3,075,281 unitary representations in the FPP.

We have checked *independently* that these representations are indeed unitary.

Now: check all the remaining representations are not unitary (i.e. we haven't missed anything). This is much harder: there are billions of non-unitary facets.

 $E_6/E_7/E_8$

group	#(x, lambda)	#unitary	time (secs)
$E_6(split)$	26,325	2,217	98
$E_6(quat)$	74,459	19,831	662.316
$E_7(split)$	2,025,526	237,641	~ 16 hours
E ₈ (split)	∼60 M	3,075,281	?

We'd like a conceptual understanding of the unitary dual.

We'd like a conceptual understanding of the unitary dual.

Parallel track... Arthur's conjectures...

We'd like a conceptual understanding of the unitary dual.

Parallel track... Arthur's conjectures...

 $\Psi: W_{\mathbb{R}} \to^L G \mapsto \text{Arthur packet } \Pi(\Psi) \text{ (also known as an ABV packet) by the theory of Adams/Barbasch/Vogan.}$

We'd like a conceptual understanding of the unitary dual.

Parallel track... Arthur's conjectures...

 $\Psi: W_{\mathbb{R}} \to^L G \mapsto \text{Arthur packet } \Pi(\Psi) \text{ (also known as an ABV packet) by the theory of Adams/Barbasch/Vogan.}$

 Ψ is unipotent: $\Psi|_{\mathbb{C}^*}=1$

But that's just a calculation!

We'd like a conceptual understanding of the unitary dual.

Parallel track... Arthur's conjectures...

 $\Psi: W_{\mathbb{R}} \to^L G \mapsto \text{Arthur packet } \Pi(\Psi) \text{ (also known as an ABV packet) by the theory of Adams/Barbasch/Vogan.}$

 Ψ is unipotent: $\Psi|_{\mathbb{C}^*}=1$

Theorem:

But that's just a calculation!

We'd like a conceptual understanding of the unitary dual.

Parallel track... Arthur's conjectures...

 $\Psi: W_{\mathbb{R}} \to^L G \mapsto \text{Arthur packet } \Pi(\Psi) \text{ (also known as an ABV packet) by the theory of Adams/Barbasch/Vogan.}$

 Ψ is unipotent: $\Psi|_{\mathbb{C}^*}=1$

Theorem:

1) Unipotent case: if Ψ is unipotent then $\Pi(\Psi)$ is unitary

But that's just a calculation!

We'd like a conceptual understanding of the unitary dual.

Parallel track... Arthur's conjectures...

 $\Psi: W_{\mathbb{R}} \to^L G \mapsto \text{Arthur packet } \Pi(\Psi) \text{ (also known as an ABV packet) by the theory of Adams/Barbasch/Vogan.}$

 Ψ is unipotent: $\Psi|_{\mathbb{C}^*}=1$

Theorem:

- 1) Unipotent case: if Ψ is unipotent then $\Pi(\Psi)$ is unitary
- 2) General Arthur packets: In many cases $\Pi(\Psi)$ is known to be unitary (see the following slide)

Long and complicated history/many contributors. . .

Long and complicated history/many contributors. . . Ingredients:

Long and complicated history/many contributors. . . Ingredients:

("real" means "not complex")

Long and complicated history/many contributors. . . Ingredients:

("real" means "not complex")

Arthur; Moeglin/Renard; Mok;Kaletha/Minguez/Shin/White;

Adams/Arancibia/Mezo: 1) and 2): real classical quasisplit groups

Long and complicated history/many contributors. . . Ingredients:

("real" means "not complex")

Arthur; Moeglin/Renard; Mok;Kaletha/Minguez/Shin/White; Adams/Arancibia/Mezo: 1) and 2): real classical quasisplit groups

Barbash/Ma/Sun/Zhu: 1): all real classical groups

Long and complicated history/many contributors. . . Ingredients:

("real" means "not complex")

Arthur; Moeglin/Renard; Mok;Kaletha/Minguez/Shin/White; Adams/Arancibia/Mezo: 1) and 2): real classical quasisplit groups

Barbash/Ma/Sun/Zhu: 1): all real classical groups

Adams/Miller/van Leeuwen/Vogan: 1): real exceptional groups

(using atlas)

Long and complicated history/many contributors. . . Ingredients:

("real" means "not complex")

Arthur; Moeglin/Renard; Mok;Kaletha/Minguez/Shin/White; Adams/Arancibia/Mezo: 1) and 2): real classical quasisplit groups

Barbash/Ma/Sun/Zhu: 1): all real classical groups

Adams/Miller/van Leeuwen/Vogan: 1): real exceptional groups (using atlas)

Davis/Mason-Brown uniform proof: 1): all complex groups; many cases for real groups (Hodge theory).

Long and complicated history/many contributors. . . Ingredients:

("real" means "not complex")

Arthur; Moeglin/Renard; Mok;Kaletha/Minguez/Shin/White; Adams/Arancibia/Mezo: 1) and 2): real classical quasisplit groups

Barbash/Ma/Sun/Zhu: 1): all real classical groups

Adams/Miller/van Leeuwen/Vogan: 1): real exceptional groups (using atlas)

Davis/Mason-Brown uniform proof: 1): all complex groups; many cases for real groups (Hodge theory). Plus Adams/Ionov/Mason-Brown/Vogan (unpublished): 1) in all cases, and 2) under a certain genericity condition.

 $\label{prop:sum} Assume all of Arthur's representations are unitary.$

 $\label{prop:symmetry} Assume \ all \ of \ Arthur's \ representations \ are \ unitary. \ What's \ missing?$

Assume all of Arthur's representations are unitary. What's missing? **Complementary series:** deform Arthur representations

Assume all of Arthur's representations are unitary. What's missing?

Complementary series: deform Arthur representations

Also: representations (e.g. the oscillator representation) which are "unipotent" (but not Arthur)

Assume all of Arthur's representations are unitary. What's missing?

Complementary series: deform Arthur representations

Also: representations (e.g. the oscillator representation) which are "unipotent" (but not Arthur)

There may still be some surprises.

Assume all of Arthur's representations are unitary. What's missing?

Complementary series: deform Arthur representations

Also: representations (e.g. the oscillator representation) which are "unipotent" (but not Arthur)

There may still be some surprises.

Please stay tuned for the next talk.

Thank you Jim!

