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The Atlas project

In short: compute the unitary dual of any real reductive group.

I Tools for education: teaching Lie groups to graduate students
and researchers

I Tools for non-specialists who apply Lie groups in other areas

I Tools for studying other problems in Lie groups

I Deepen our understanding of the mathematics

I Compute the unitary dual

Basic Principle: You only really understand something if you can
implement it on a computer



Example: Speh Representations

Birgit Speh [Inventiones 1983]:

G = GL(2n,R), π(k) k ∈ {1, 2, 3, . . . },

π(k) is a very interesting, small, irreducible unitary representation
with nontrivial (g,K )-cohomology

Unitarity: (Speh 1981) π(k) occurs in the non-cuspidal discrete
spectrum of GL(2n,R)/Γ

Later [Vogan/Zuckerman 1984]:

π(k) is cohomologically induced from a unitary character of
GL(n,C) ⊂ GL(2n,R)



Example: Speh Representations in Atlas

atlas> set pi=speh(8,1) {Speh representation pi(1) of GL(8,R)}

(x=188,lambda=[7,5,3,1,-1,-3,-5,-7]/2,nu=[3,1,-1,-3,3,1,-1,-3]/2)

atlas> pi.infinitesimal_character

Value: [ 7, 5, 3, 1, -1, -3, -5, -7 ]/2

atlas> is_unitary(pi)

Value: true

atlas> test_line(pi)

reducibility points: [1/3,1/2,2/3,1/1]

t lambda unitary

0 [ 0, 0, 0, 0, 0, 0, 0, 0 ] true

1/6 [ 3, 1, -1, -3, 3, 1, -1, -3 ]/12 true

1/3 [ 3, 1, -1, -3, 3, 1, -1, -3 ]/6 true

5/12 [ 15, 5, -5, -15, 15, 5, -5, -15 ]/24 false

1/2 [ 3, 1, -1, -3, 3, 1, -1, -3 ]/4 true

7/12 [ 21, 7, -7, -21, 21, 7, -7, -21 ]/24 false

2/3 [ 3, 1, -1, -3, 3, 1, -1, -3 ]/3 false

5/6 [ 15, 5, -5, -15, 15, 5, -5, -15 ]/12 false

1/1 [ 3, 1, -1, -3, 3, 1, -1, -3 ]/2 true



Local Langlands Conjecture

Local Langlands conjecture:

G : connected reductive complex group, defined over R

WR = 〈C∗, j〉 jzj−1 = z , j2 = −1

G∨: complex dual group of G

LG = G∨ o Gal(C/R)

Local Langlands Conjecture:

φ : WR →LG 7→ Πφ ⊂ Π(G )adm

(φ admissible)

Πφ is an L-packet

Π(G )adm = ·∪{φ}/G∨Π(φ)



Arthur’s Conjectures

∼ 1980: Jim Arthur: also consider

Ψ : WR × SL(2,C)→LG

such that Ψ|WR is bounded.

Arthur conjectures: for each such Ψ there should be a finite set

Π(Ψ) ⊂ Π(G )adm

satisfying various properties

φΨ : WR →LG : φΨ(w) = Ψ(w ,

(
|w |

1
2 0

0 |w |−
1
2

)
⇒

Π(φψ) ⊂ Π(ψ) (Arthur packets contain L-packets)

Π(Ψ) consists of unitary representations



Arthur’s Unipotent Representations

Unipotent case: WR = 〈C∗, j〉 Ψ|C∗ = 1

Ψ : SL(2,C)× Z/2Z→LG

(Jacobson-Morozov) Ψ|SL(2,C) ↔ Unipotent Orbit O∨ in G∨

Ignore Z/2Z: there should be a map

O∨ 7→ Π(O∨) = {π1, . . . , πn}

a finite set of irreducible unitary representations of G (R).

We refer to Π(O∨) as a weak Arthur packet. It is a union of
honest Arthur packets:

Π(O∨) = ∪xΠ(Ψx)

Ψx |SL(2,C) = Ψ, and Ψx(j) = x ∈ Cent(O∨)2 (modulo conjugacy
by Cent(O∨).



Overview

Today: Π(O∨)

Note: Arthur did not give a definition of these packets, just some
properties they should satisfy (which are not sufficient to
determine them).

A precise definition of Π(O∨) is given in Barbasch-Vogan’s 1985
Annals paper, and the 1992 book by Adams, Barbasch and Vogan
(aka [ABV]).

Remark For classical groups there is a very different definition in
Arthur’s 2013 book. This definition agrees with [ABV]
(forthcoming work by Adams, Arancibia and Mezo)

Goal: compute Π(O∨)



Associated Variety

Associated to an irreducible representation π of G (R) is a
nilpotent G (C)-orbit in g.

I = AnnU(g)(π)

π 7→ I 7→ gr(I ) ⊂ gr(U(g)) ' S(g) 7→ V(gr(I )) ⊂g∗

Definition: AV(Ann(π)) = V(gr(I ))⊂ the nilpotent cone

Fact: (Borho/Brylinski/Joseph) V(π) is the closure of a single
nilpotent orbit O.

Definition: AVann(π) = O



Infinitesimal character

Infinitesimal character of a dual orbit:

O∨ is a nilpotent orbit for the complex dual group G∨.

Jacobson-Morozov:

O∨ → {H,E ,F} → H ∈ h∨ ' h∗ → λ(O∨) =
1

2
H ∈ h∗



Weak Arthur Packets

Definition (weak Arthur packet):

Suppose O∨ is a nilpotent orbit of G∨. Assume O∨ is even
(λ(O∨) is in the root lattice; every node in the Dynkin diagram of
O∨ has label 0, 2).Let O be the (special) dual G -orbit (via
Lusztig-Spaltenstein duality of nilpotent orbits).

Then Π(O∨) consists of the irreducible representations π of G (R)
satisfying:

(a) the infinitesimal character of π is λ(O∨) ∈ h∗

(b) AVann(π) = O

This is a weak Arthur packet of special unipotent representations



Weak Arthur Packets

Note: If O∨ is not even, the construction involves

H∨ = CentG∨(e2πiλ(O∨))0 ⊂ G∨

.

For simplicity stick to even orbits for this talk.

Note: The definition of honest Arthur packets involves the element
Ψ(j), and the G (R) orbits in O ∩ g0 (equivalently: the K (C) orbits
in O ∩ g−θ). There is a defintion in [ABV], and now an explicit
algorithm, but the implementation is more difficult.



Computational Ingredients

1) Explicit Langlands classification

Fix a regular infinitesimal character λ:

Mλ = Z-span of the irreducible representations with inf. char. λ

(finite dimensional)

An explicit parameter space Sλ:

Mλ = Z〈{J(γ) | γ ∈ Sλ}〉

J(γ) is irreducible; the unique irreducible quotient of a standard
module I (γ), and

Mλ = Z〈{I (γ) | γ ∈ Sλ}〉

2) Kazhdan-Lusztig-Vogan polynomials (change of basis matrix for
Mγ for the J(γ) and I (γ) bases)



Computational Ingredients

3) Coherent continuation (Zuckerman): Mλ is a representation of
the Weyl group W . This is easily computed in the basis of
standard modules I (γ): sα takes I (γ) to a sum of a small number
of other I (γ′), with small integer coefficients.
The KLV polynomials then give this action in the bases of
irreducibles J(γ).

Mλ is the direct sum of cell representations (defined
combinatorially using the KLV polynomials). Each cell C contains a
unique special representation Sp(C) of W with multiplicity one.

4) Parametrization of complex nilpotent orbits N/G

5) The Springer correspondence N/G ↪→ Ŵ : O 7→ Springer(O)



Algorithm

Fix G (C), G (R). For simplicity assume G (C) is simply connected,
and G (R) is inner to a split group.

1) Compute the character table of W = W (G (C)).

2) Explicitly compute Sρ,Mρ.

3) Compute the representation of W on Mρ, and its decomposition
into cells.

4) For each cell C compute the special representation Sp(C).



Algorithm

Now: fix a complex even nilpotent orbit O∨
Initialize an empty list of parameters WP(O∨).

5) Let σ = Springer(O∨)⊗ sgn

6) Run over the cells C. For each cell C check if Sp(C) = σ. If not,
ignore it. If so: apply translation to all of the irreducible
representation J(γ) ∈ C, to translate from ρ to λ(O∨) (which is
dominant, but usually singular). This operation takes an irreducible
to irreducible or 0. Add the non-zero terms to WP(O∨).

7) After running over all cells WP(O∨) is the weak packet defined
by O∨.



Classical groups

For classical groups the weak packets (and more) were computed,
at least in small examples, by Jonathan Fernandes (UMD thesis,
2019).



atlas> show_nilpotent_orbits(G2_s)

i H diagram dim BC Levi Cent A(O)

0 [0,0] [0,0] 0 2T1 G2 [1]

1 [1,2] [0,1] 6 A1+T1 A1 [1]

2 [2,3] [1,0] 8 A1+T1 A1 [1]

3 [2,4] [0,2] 10 G2 e [1,2,3]

4 [6,10] [2,2] 12 G2 e [1]

B=block/C=Cell

orbit B C parameters inf. char.

0 0 0 (x=9,lambda=[1,1]/1,nu=[0,0]/1) [ 0, 0 ]/1

0 1 0 (x=0,lambda=[0,0]/1,nu=[0,0]/1) [ 0, 0 ]/1

1 0 1 (x=9,lambda=[1,1]/1,nu=[1,0]/2) [ 1, 0 ]/2

1 0 2 (x=9,lambda=[2,1]/1,nu=[1,0]/2) [ 1, 0 ]/2

2 0 1 (x=9,lambda=[1,2]/1,nu=[0,1]/2) [ 0, 1 ]/2

2 0 2 (x=9,lambda=[1,1]/1,nu=[0,1]/2) [ 0, 1 ]/2

3 0 1 (x=4,lambda=[1,0]/1,nu=[2,-1]/2) [ 1, 0 ]/1

3 0 1 (x=8,lambda=[3,0]/1,nu=[1,0]/1) [ 1, 0 ]/1

3 0 2 (x=2,lambda=[1,0]/1,nu=[0,0]/1) [ 1, 0 ]/1

3 0 2 (x=6,lambda=[4,-1]/1,nu=[3,-1]/2) [ 1, 0 ]/1

3 0 2 (x=9,lambda=[1,1]/1,nu=[1,0]/1) [ 1, 0 ]/1

4 0 3 (x=9,lambda=[1,1]/1,nu=[1,1]/1) [ 1, 1 ]/1



Some Unipotent Representations

Group #orbs. #unip. #unip by orbit
SL(2,R) 2 4 3,1
SU(2) 1 1
Sp(4,R) 4 16 5,2,8,1
Sp(1, 1) 3 3 1,1,1
Sp(2) 1 1
Sp(6,R) 7 47 7,6,16,2,7,8,1

G2 (split) 5 12 2,2,2,5,1
G2 (cpt) 1 1
F4 (split) 16 75 3,4,10,5,2,4,2,7,2,8,14,2,4,3,4,1
F4(B4) 3 3 1,1,1
F4 (cpt) 1 1
E6 (split) 21 68 3,4,5,4,7,4,2,3,4,2,4,7,3,2,2,2,2,4,2,1,1
E6(F4) 3 3 1,1,1



Some Unipotent Representations

Group #orbs. #unip. #unip by orbit
E7 (split) 45 252 6,7,8,3,8,16,4,12,9,7,6,2,3,6,8,

17,4,4,7,7,12,2,3,2,8,8,5,6,4,2,
12,2,4,5,2,5,2,4,8,2,3,4,1,1,1

E7(E6T ) 13 28 3,1,1,5,1,2,2,1,5,1,3,2,1
E7(D6A1T ) 25 56 2,2,2,1,3,2,4,1,1,3,3,2

1,2,3,7,1,1,2,1,2,6,2,1,1
E7 (compact) 1 1



E8

E8 has 70 unipotent orbits, of which 27 are even.

Calculating the KLV polynomials for E8 now takes just under three
hours.

Storing the KLV polynomials requires about 100 gigabytes of
storage. However storing the information needed to compute the
cell representations only requires 42 megabytes.

There are 104 cells sizes (average size: 4,356):
1,8,35,196,196,260,560,260,560,560,1100,567,3752,1100,4025,3240,3192,1100,

2625,3240,3240,3240,3240,3640,3240,3640,8192,3640,7560,3240,8192,5040,

4536,4536,4536,525,3500,6075,7560,2835,4536,8800,3500,6075,6075,4200,

4200,8800,46676,22778,4200,4200,38766,4200,2100,8800,4536,4200,8800,4200,

6075,6075,2835,4536,4536,4200,7560,4536,3640,6075,7560,5040,3500,8192,

3640,3240,3240,3240,1100,3500,8192,3640,3240,3240,525,3240,3240,4025,

3752,2625,3192,1100,1100,560,567,560,560,260,196,260,196,35,8,1



E8

We need to compute the character of a representation of each of
these dimensions, up to 46,676. That is: multiply up to 120
matrices of size 46,676 (and take the trace). Each matrix is sparse
(the action of a simple reflection). So: multiply an arbitrary matrix
* sparse matrix.

Example:

E8(split): 27 even orbits 7→ 112 unipotent representations

1,4,6,5,1,4,6,4,4,4,18,1,4,4,4,1,6,5,5,5,6,3,4,4,1,1,1



Thank you


