Computing weak packets for 5 dual orbits of compact connected real group with Lie algebra 'g2' Initializing CharacterTable for Lie type 'G2' Step 1/6 Step 2/6 Step 3/6 Step 4/6 Step 5/6 Step 6/6 Orbit by diagram: (simply connected adjoint root datum of Lie type 'G2',(),[ 6, 10 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'G2',(),[ 0, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'G2',(),[ 2, 4 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'G2',(),[ 1, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'G2',(),[ 2, 4 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'G2',(),[ 0, 1 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'G2',(),[ 2, 4 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'G2',(),[ 2, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'G2',(),[ 0, 0 ]) Computing weak packet for orbit: simply connected adjoint root datum of Lie type 'G2' [ 2, 2 ] dim=12 Computing weak packets for compact connected real group with Lie algebra 'g2' gamma:[ 3, 3 ]/1 gamma_final:[ 1, 1 ]/1 Initializing CharacterTable for Lie type 'G2' Step 1/6 Step 2/6 Step 3/6 Step 4/6 Step 5/6 Step 6/6 integral data: st_int rd_int:simply connected adjoint root datum of Lie type 'G2' st_int.rd: simply connected adjoint root datum of Lie type 'G2' O_check_int:(simply connected adjoint root datum of Lie type 'G2',(),[ 2, 2 ]) permutation: | 1, 0 | | 0, 1 | computing packet for:(simply connected adjoint root datum of Lie type 'G2',(),[ 2, 2 ]) computing springer map of[0,0] O: (simply connected adjoint root datum of Lie type 'G2',(),[ 0, 0 ]) survive:final parameter(x=0,lambda=[3,3]/1,nu=[0,0]/1) [ 1, 1 ]/1 cell character: 3 springer_O:3 =============================================================================== complex nilpotent orbits for compact connected real group with Lie algebra 'g2' i: orbit number H: semisimple element BC Levi: Bala-Carter Levi Cent: identity component of Cent(SL(2)) Z(Cent^0): order of center of derived group of id. comp. of Centralizer A(O): orders of conj. classes in component group of centralizer #RF(O): number of real forms of O C_2: conjugacy classes in Cent(SL(2))_0 with square 1 i H diagram dim BC Levi Cent Z(Cent^0) A(O) #RF(O) C_2 0 [0,0] [0,0] 0 2T1 G2 1 [1] 1 2 1 [1,2] [0,1] 6 A1+T1 A1 2 [1] 0 2 2 [2,3] [1,0] 8 A1+T1 A1 2 [1] 0 2 3 [2,4] [0,2] 10 G2 e 1 [1,2,3] 0 1 4 [6,10] [2,2] 12 G2 e 1 [1] 0 1 Arthur parameters listed by orbit: #parameters by orbit: [2,2,2,2,1] Total: 9 orbit #0 for G #orbits for (disconnected) Cent(O): 2 K_0 H mult root datum of Lie type 'A1.A1' [ 0, 0 ] 1 simply connected adjoint root datum of Lie type 'G2' [ 0, 0 ] 1 orbit #1 for G #orbits for (disconnected) Cent(O): 2 K_0 H mult root datum of Lie type 'A1.A1' [ -1, 1 ] 1 simply connected adjoint root datum of Lie type 'G2' [ 1, 0 ] 1 orbit #2 for G #orbits for (disconnected) Cent(O): 2 K_0 H mult root datum of Lie type 'A1.A1' [ 3, -1 ] 1 simply connected adjoint root datum of Lie type 'G2' [ 0, 1 ] 1 orbit #3 for G #orbits for (disconnected) Cent(O): 2 K_0 H mult root datum of Lie type 'A1.A1' [ 2, 0 ] 1 simply connected adjoint root datum of Lie type 'G2' [ 2, 0 ] 1 orbit #4 for G #orbits for (disconnected) Cent(O): 1 K_0 H mult simply connected adjoint root datum of Lie type 'G2' [ 2, 2 ] 1 orbit |packet| 4 1 Total 1 *: dual(cell) contains an Aq(lambda) orbit# block# cell# parameters 4 0 0 1 Total 1 *: dual(cell) contains an Aq(lambda) *: dual(p) is an Aq(lambda) orbit# block# cell# parameters inf. char. 4 0 0 final parameter(x=0,lambda=[1,1]/1,nu=[0,0]/1) [ 1, 1 ]/1 Total 1 set parameters=[ parameter(G,0,[ 1, 1 ]/1,[ 0, 0 ]/1) ] Value: [([],[]),([],[]),([],[]),([],[]),([([final parameter(x=0,lambda=[3,3]/1,nu=[0,0]/1)],[([0],[([0,1],[])])])],[(0,0,final parameter(x=0,lambda=[1,1]/1,nu=[0,0]/1))])]