Computing weak packets for 16 dual orbits of connected real group with Lie algebra 'f4(so(9))' Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 22, 42, 30, 16 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 0, 0, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 14, 26, 18, 10 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 0, 0, 1 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 14, 26, 18, 10 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 1, 0, 0, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 10, 20, 14, 8 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 0, 1, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 10, 19, 14, 8 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 2, 0, 0, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 10, 18, 12, 6 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 0, 0, 2 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 6, 12, 8, 4 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 1, 0, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 6, 12, 8, 4 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 1, 0, 0, 2 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 6, 12, 8, 4 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 1, 0, 1, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 6, 12, 8, 4 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 1, 0, 1 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 6, 12, 8, 4 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 0, 2, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 4, 8, 6, 4 ]) Computing weak packet for orbit: simply connected adjoint root datum of Lie type 'F4' [ 2, 1, 0, 1 ] dim=42 Computing weak packets for connected real group with Lie algebra 'f4(so(9))' gamma:[ 6, 5, 4, 5 ]/2 gamma_final:[ 2, 1, 0, 1 ]/2 integral data: st_int rd_int:root datum of Lie type 'B3.A1' st_int.rd: simply connected root datum of Lie type 'B3.A1' O_check_int:(adjoint root datum of Lie type 'C3.A1',(),[ 2, 2, 2, 0 ]) computing packet for:(adjoint root datum of Lie type 'C3.A1',(),[ 2, 2, 2, 0 ]) computing springer map of[0,0,0,2] O: (simply connected root datum of Lie type 'B3.A1',(),[ 0, 0, 0, 1 ]) survive:final parameter(x=4,lambda=[3,3,1,3]/1,nu=[0,-1,2,-1]/1) [ 2, 1, 0, 1 ]/2 cell character: 1 springer_O:1 Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 4, 6, 4, 2 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 0, 2, 2 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 3, 6, 4, 2 ]) Skipping dual orbit (simply connected adjoint root datum of Lie type 'F4',(),[ 2, 0, 2, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 2, 4, 3, 2 ]) Computing weak packet for orbit: simply connected adjoint root datum of Lie type 'F4' [ 2, 0, 2, 2 ] dim=46 Computing weak packets for connected real group with Lie algebra 'f4(so(9))' gamma:[ 3, 2, 3, 3 ]/1 gamma_final:[ 1, 0, 1, 1 ]/1 integral data: st_int rd_int:simply connected adjoint root datum of Lie type 'F4' st_int.rd: simply connected adjoint root datum of Lie type 'F4' O_check_int:(simply connected adjoint root datum of Lie type 'F4',(),[ 2, 0, 2, 2 ]) computing packet for:(simply connected adjoint root datum of Lie type 'F4',(),[ 2, 0, 2, 2 ]) computing springer map of[0,0,0,1] O: (simply connected adjoint root datum of Lie type 'F4',(),[ 2, 4, 3, 2 ]) survive:final parameter(x=4,lambda=[3,3,1,4]/1,nu=[0,-3,6,-3]/2) [ 1, 0, 1, 1 ]/1 survive:final parameter(x=5,lambda=[3,4,1,1]/1,nu=[0,-3,3,3]/1) [ 1, 0, 1, 1 ]/1 survive:final parameter(x=11,lambda=[-3,8,-3,3]/1,nu=[19,-19,19,0]/2) [ 1, 0, 1, 1 ]/1 cell character: 19 springer_O:19 dim: 1 4 Orbit by diagram: (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 0, 0, 0 ]) Computing weak packet for orbit: simply connected adjoint root datum of Lie type 'F4' [ 2, 2, 2, 2 ] dim=48 Computing weak packets for connected real group with Lie algebra 'f4(so(9))' gamma:[ 3, 3, 3, 3 ]/1 gamma_final:[ 1, 1, 1, 1 ]/1 integral data: st_int rd_int:simply connected adjoint root datum of Lie type 'F4' st_int.rd: simply connected adjoint root datum of Lie type 'F4' O_check_int:(simply connected adjoint root datum of Lie type 'F4',(),[ 2, 2, 2, 2 ]) computing packet for:(simply connected adjoint root datum of Lie type 'F4',(),[ 2, 2, 2, 2 ]) computing springer map of[0,0,0,0] O: (simply connected adjoint root datum of Lie type 'F4',(),[ 0, 0, 0, 0 ]) survive:final parameter(x=0,lambda=[3,3,3,3]/1,nu=[0,0,0,0]/1) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=1,lambda=[3,3,3,3]/1,nu=[0,0,0,0]/1) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=2,lambda=[3,3,3,3]/1,nu=[0,0,0,0]/1) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=3,lambda=[3,3,4,1]/1,nu=[0,0,-3,6]/2) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=4,lambda=[3,4,1,4]/1,nu=[0,-3,6,-3]/2) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=5,lambda=[3,5,1,1]/1,nu=[0,-3,3,3]/1) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=6,lambda=[6,0,3,6]/1,nu=[-9,9,0,-9]/2) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=7,lambda=[7,-1,7,-1]/1,nu=[-6,6,-6,6]/1) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=8,lambda=[-2,3,3,8]/1,nu=[15,0,0,-15]/2) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=9,lambda=[8,3,-2,3]/1,nu=[-15,0,15,0]/2) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=10,lambda=[-3,3,9,-3]/1,nu=[9,0,-9,9]/1) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=11,lambda=[-4,10,-4,3]/1,nu=[21,-21,21,0]/2) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=12,lambda=[3,-6,12,3]/1,nu=[0,27,-27,0]/2) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=13,lambda=[3,3,-7,13]/1,nu=[0,0,15,-15]/1) [ 1, 1, 1, 1 ]/1 survive:final parameter(x=14,lambda=[3,3,3,-8]/1,nu=[0,0,0,33]/2) [ 1, 1, 1, 1 ]/1 cell character: 3 springer_O:3 Computing weak packets for 8 dual orbits of connected real group with Lie algebra 'so(7).gl(1,R)' Orbit by diagram: (root datum of Lie type 'B3.T1',(),[ 6, 10, 6, 0 ]) Skipping dual orbit (root datum of Lie type 'C3.T1',(),[ 0, 0, 0, 0 ]) (d(O_check) has no real forms for G) Orbit by diagram: (root datum of Lie type 'B3.T1',(),[ 4, 6, 3, 0 ]) Skipping dual orbit (root datum of Lie type 'C3.T1',(),[ 1, 0, 0, -1 ]) (d(O_check) has no real forms for G) Orbit by diagram: (root datum of Lie type 'B3.T1',(),[ 4, 6, 3, 0 ]) Skipping dual orbit (root datum of Lie type 'C3.T1',(),[ 0, 1, 0, -2 ]) (d(O_check) has no real forms for G) Orbit by diagram: (root datum of Lie type 'B3.T1',(),[ 2, 4, 2, 0 ]) Skipping dual orbit (root datum of Lie type 'C3.T1',(),[ 0, 0, 2, -3 ]) (d(O_check) has no real forms for G) Orbit by diagram: (root datum of Lie type 'B3.T1',(),[ 2, 3, 2, 0 ]) Skipping dual orbit (root datum of Lie type 'C3.T1',(),[ 0, 2, 0, -4 ]) (d(O_check) has no real forms for G) Orbit by diagram: (root datum of Lie type 'B3.T1',(),[ 2, 2, 1, 0 ]) Skipping dual orbit (root datum of Lie type 'C3.T1',(),[ 2, 1, 0, -4 ]) (d(O_check) has no real forms for G) Orbit by diagram: (root datum of Lie type 'B3.T1',(),[ 2, 2, 1, 0 ]) Skipping dual orbit (root datum of Lie type 'C3.T1',(),[ 2, 0, 2, -5 ]) (d(O_check) has no real forms for G) Orbit by diagram: (root datum of Lie type 'B3.T1',(),[ 0, 0, 0, 0 ]) Computing weak packet for orbit: root datum of Lie type 'C3.T1' [ 2, 2, 2, -9 ] dim=18 Computing weak packets for connected real group with Lie algebra 'so(7).gl(1,R)' gamma:[ 6, 6, 6, -27 ]/2 gamma_final:[ 2, 2, 2, -9 ]/2 integral data: st_int rd_int:root datum of Lie type 'B3.T1' st_int.rd: simply connected root datum of Lie type 'B3' O_check_int:(adjoint root datum of Lie type 'C3',(),[ 2, 2, 2 ]) computing packet for:(adjoint root datum of Lie type 'C3',(),[ 2, 2, 2 ]) computing springer map of[0,0,0] O: (simply connected root datum of Lie type 'B3',(),[ 0, 0, 0 ]) survive:final parameter(x=0,lambda=[6,6,6,-27]/2,nu=[0,0,0,0]/1) [ 2, 2, 2, -9 ]/2 cell character: 0 springer_O:0 =============================================================================== Orbits for the dual group: connected split real group with Lie algebra 'f4(R)' complex nilpotent orbits for inner class Complex reductive group of type F4, with involution defining inner class of type 'c', with 3 real forms and 3 dual real forms root datum of inner class: simply connected adjoint root datum of Lie type 'F4' i: orbit number H: semisimple element BC Levi: Bala-Carter Levi Cent_0: identity component of Cent(SL(2)) Z(Cent^0): order of center of derived group of id. comp. of Centralizer C_2: conjugacy classes in Cent(SL(2))_0 with square 1 A(O): orders of conj. classes in component group of centralizer of O #RF: number of real forms of O for all real forms (of integrality datum) in inner class #AP: number of Arthur parameters for O i diagram dim BC Levi Cent_0 Z C_2 A(O) #RF #AP 0 [0,0,0,0] 0 4T1 F4 1 3 [1] [1,1,1] 3 1 [0,0,0,1] 16 A1+3T1 C3 2 4 [1] [2,2,0] 4 2 [1,0,0,0] 22 A1+3T1 A3 4 3 [1,2] [3,2] 5 3 [0,0,1,0] 28 2A1+2T1 2A1 2 4 [1] [0,0,4] 4 4 [2,0,0,0] 30 A2+2T1 G2 1 2 [1] [0,1,1] 2 5 [0,0,0,2] 30 A2+2T1 A2 3 2 [1,2] [0,0,3] 3 6 [0,1,0,0] 34 A1+A2+T1 A1 2 2 [1] [0,2] 2 7 [1,0,0,2] 36 C2+2T1 2A1 4 4 [1,2] [2,2] 4 8 [1,0,1,0] 36 A1+A2+T1 A1 2 2 [1] [0,2,0] 2 9 [0,1,0,1] 38 C3+T1 A1 2 2 [1,2] [0,0,4] 4 10 [0,0,2,0] 40 F4 e 1 1 [1,2,2,3,4] [0,0,3] 3 11 [2,1,0,1] 42 C3+T1 A1 2 2 [1] [0,0,2] 2 12 [0,0,2,2] 42 B3+T1 A1 1 2 [1] [0,0,2] 2 13 [2,0,2,0] 44 F4 e 1 1 [1,2] [0,0,2] 2 14 [2,0,2,2] 46 F4 e 1 1 [1,2] [0,0,2] 2 15 [2,2,2,2] 48 F4 e 1 1 [1] [0,0,1] 1 Information about orbit centralizers: orbit#: 0 diagram: [0,0,0,0] isogeny information: Centralizer: F4 Center is trivial simply connected adjoint root datum of Lie type 'F4' ------------- orbit#: 1 diagram: [0,0,0,1] isogeny information: Centralizer: C3 Group is semisimple center=Z/2Z simply connected root datum of Lie type 'C3' ------------- orbit#: 2 diagram: [1,0,0,0] isogeny information: Centralizer: A3 Group is semisimple center=Z/4Z simply connected root datum of Lie type 'A3' ------------- orbit#: 3 diagram: [0,0,1,0] isogeny information: Centralizer: 2A1 Group is semisimple center=Z/2Z adjoint root datum of Lie type 'A1' simply connected root datum of Lie type 'A1' ------------- orbit#: 4 diagram: [2,0,0,0] isogeny information: Centralizer: G2 Center is trivial simply connected adjoint root datum of Lie type 'G2' ------------- orbit#: 5 diagram: [0,0,0,2] isogeny information: Centralizer: A2 Group is semisimple center=Z/3Z simply connected root datum of Lie type 'A2' ------------- orbit#: 6 diagram: [0,1,0,0] isogeny information: Centralizer: A1 Group is semisimple center=Z/2Z simply connected root datum of Lie type 'A1' ------------- orbit#: 7 diagram: [1,0,0,2] isogeny information: Centralizer: 2A1 Group is semisimple center=Z/2Z x Z/2Z simply connected root datum of Lie type 'A1' simply connected root datum of Lie type 'A1' ------------- orbit#: 8 diagram: [1,0,1,0] isogeny information: Centralizer: A1 Group is semisimple center=Z/2Z simply connected root datum of Lie type 'A1' ------------- orbit#: 9 diagram: [0,1,0,1] isogeny information: Centralizer: A1 Group is semisimple center=Z/2Z simply connected root datum of Lie type 'A1' ------------- orbit#: 10 diagram: [0,0,2,0] isogeny information: Centralizer: e Center is trivial ------------- orbit#: 11 diagram: [2,1,0,1] isogeny information: Centralizer: A1 Group is semisimple center=Z/2Z simply connected root datum of Lie type 'A1' ------------- orbit#: 12 diagram: [0,0,2,2] isogeny information: Centralizer: A1 Center is trivial adjoint root datum of Lie type 'A1' ------------- orbit#: 13 diagram: [2,0,2,0] isogeny information: Centralizer: e Center is trivial ------------- orbit#: 14 diagram: [2,0,2,2] isogeny information: Centralizer: e Center is trivial ------------- orbit#: 15 diagram: [2,2,2,2] isogeny information: Centralizer: e Center is trivial ------------- Arthur parameters listed by orbit: #parameters by orbit: [3,4,5,4,2,3,2,4,2,4,3,2,2,2,2,1] Total: 45 orbit #0 for G #orbits for (disconnected) Cent(O): 3 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 0, 0, 0, 0 ] [0,0,0,0] 0 1 simply connected root datum of Lie type 'B4' [ 0, 0, 0, 0 ] [0,0,0,0] 0 1 root datum of Lie type 'C3.A1' [ 0, 0, 0, 0 ] [0,0,0,0] 0 1 orbit #1 for G #orbits for (disconnected) Cent(O): 4 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 0, 0, 0, 1 ] [0,0,0,1] 16 1 simply connected root datum of Lie type 'B4' [ 0, 0, 0, 1 ] [0,1,0,0] 12 1 root datum of Lie type 'C3.A1' [ -1, 1, -1, 1 ] [0,0,0,2] 2 1 root datum of Lie type 'C3.A1' [ 0, 0, 1, -1 ] [0,1,0,0] 6 1 orbit #2 for G #orbits for (disconnected) Cent(O): 5 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 1, 0, 0, 0 ] [1,0,0,0] 22 1 simply connected root datum of Lie type 'B4' [ -1, 1, 0, 0 ] [0,0,0,2] 14 1 simply connected root datum of Lie type 'B4' [ 1, 0, 0, 0 ] [0,0,1,0] 16 1 root datum of Lie type 'C3.A1' [ -1, 1, 0, 0 ] [0,1,0,2] 8 1 root datum of Lie type 'C3.A1' [ 1, 0, 0, 0 ] [1,0,0,0] 10 1 orbit #3 for G #orbits for (disconnected) Cent(O): 4 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 0, 0, 1, 0 ] [0,0,1,0] 28 1 simply connected root datum of Lie type 'B4' [ 0, 0, 1, 0 ] [1,0,0,1] 20 1 root datum of Lie type 'C3.A1' [ 1, -1, 1, 1 ] [0,0,2,0] 12 1 root datum of Lie type 'C3.A1' [ 0, 1, -1, 1 ] [1,0,0,2] 12 1 orbit #4 for G #orbits for (disconnected) Cent(O): 2 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 2, 0, 0, 0 ] [2,0,0,0] 30 1 root datum of Lie type 'C3.A1' [ 2, 0, 0, 0 ] [2,0,0,0] 14 1 orbit #5 for G #orbits for (disconnected) Cent(O): 3 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 0, 0, 0, 2 ] [0,0,0,2] 30 1 simply connected root datum of Lie type 'B4' [ 0, 0, 0, 2 ] [0,2,0,0] 22 1 root datum of Lie type 'C3.A1' [ 0, 0, 0, 2 ] [0,0,2,2] 14 1 orbit #6 for G #orbits for (disconnected) Cent(O): 2 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 0, 1, 0, 0 ] [0,1,0,0] 34 1 simply connected root datum of Lie type 'B4' [ 1, -1, 2, 0 ] [2,0,0,0] 24 1 orbit #7 for G #orbits for (disconnected) Cent(O): 4 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 1, 0, 0, 2 ] [1,0,0,2] 36 1 simply connected root datum of Lie type 'B4' [ -1, 1, 0, 2 ] [0,2,0,2] 24 1 simply connected root datum of Lie type 'B4' [ 1, 0, 0, 2 ] [0,2,1,0] 26 1 root datum of Lie type 'C3.A1' [ 1, 0, 2, -2 ] [1,2,0,0] 14 1 orbit #8 for G #orbits for (disconnected) Cent(O): 2 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 1, 0, 1, 0 ] [1,0,1,0] 36 1 root datum of Lie type 'C3.A1' [ 1, 1, -1, 1 ] [2,0,0,2] 16 1 orbit #9 for G #orbits for (disconnected) Cent(O): 4 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 0, 1, 0, 1 ] [0,1,0,1] 38 1 simply connected root datum of Lie type 'B4' [ 0, 1, 0, 1 ] [0,1,1,2] 26 1 root datum of Lie type 'C3.A1' [ 1, -1, 3, -1 ] [0,2,2,0] 16 1 root datum of Lie type 'C3.A1' [ 0, 1, 1, -1 ] [1,2,0,2] 16 1 orbit #10 for G #orbits for (disconnected) Cent(O): 3 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 0, 0, 2, 0 ] [0,0,2,0] 40 1 simply connected root datum of Lie type 'B4' [ 0, 0, 2, 0 ] [2,0,0,2] 28 1 root datum of Lie type 'C3.A1' [ 0, 0, 2, 0 ] [0,2,2,2] 18 1 orbit #11 for G #orbits for (disconnected) Cent(O): 2 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 2, 1, 0, 1 ] [2,1,0,1] 42 1 root datum of Lie type 'C3.A1' [ 3, -1, 3, -1 ] [2,2,2,0] 18 1 orbit #12 for G #orbits for (disconnected) Cent(O): 2 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 0, 0, 2, 2 ] [0,0,2,2] 42 1 simply connected root datum of Lie type 'B4' [ 0, 0, 2, 2 ] [2,2,0,2] 30 1 orbit #13 for G #orbits for (disconnected) Cent(O): 2 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 2, 0, 2, 0 ] [2,0,2,0] 44 1 root datum of Lie type 'C3.A1' [ 2, 0, 2, 0 ] [2,2,2,2] 20 1 orbit #14 for G #orbits for (disconnected) Cent(O): 2 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 2, 0, 2, 2 ] [2,0,2,2] 46 1 simply connected root datum of Lie type 'B4' [ 2, 0, 2, 2 ] [2,2,2,2] 32 1 orbit #15 for G #orbits for (disconnected) Cent(O): 1 K_0 H diagram dim mult simply connected adjoint root datum of Lie type 'F4' [ 2, 2, 2, 2 ] [2,2,2,2] 48 1 orbit |packet| 11 1 14 1 15 1 Total 3 *: dual(cell) contains an Aq(lambda) orbit# block# cell# parameters 11 0 0 1 14 0 1 1 15 0 2 1 Total 3 orbit# block# cell# parameters inf. char. 11 0 0 final parameter(x=4,lambda=[1,0,1,0]/1,nu=[0,0,0,0]/1)(I) [ 2, 1, 0, 1 ]/2 14 0 1 final parameter(x=11,lambda=[2,-1,2,1]/1,nu=[5,-5,5,0]/2) [ 1, 0, 1, 1 ]/1 15 0 2 final parameter(x=14,lambda=[1,1,1,1]/1,nu=[0,0,0,11]/2) [ 1, 1, 1, 1 ]/1 Total 3 Induced 1 set parameters=[ parameter(G,4,[ 1, 0, 1, 0 ]/1,[ 0, 0, 0, 0 ]/1), parameter(G,11,[ 2, -1, 2, 1 ]/1,[ 5, -5, 5, 0 ]/2), parameter(G,14,[ 1, 1, 1, 1 ]/1,[ 0, 0, 0, 11 ]/2) ]