|
void | atlas::abelian::basis (std::vector< matrix::Vector< int > > &b, const bitmap::BitMap &B, const FiniteAbelianGroup &A) |
|
void | atlas::abelian::coset (bitmap::BitMap &C, const bitmap::BitMap &B, GrpNbr x, const FiniteAbelianGroup &A) |
|
const bitmap::BitMap & | atlas::abelian::cycGenerators (const FiniteAbelianGroup &A) |
|
void | atlas::abelian::generateSubgroup (bitmap::BitMap &B, GrpNbr x, const FiniteAbelianGroup &A) |
|
void | atlas::abelian::generators (GrpNbrList &gen, const bitmap::BitMap &B, const FiniteAbelianGroup &A) |
|
bool | atlas::abelian::isElementaryAbelian (const std::vector< unsigned long > &c) |
|
bitmap::BitMap | atlas::abelian::quotReps (const bitmap::BitMap &B, const FiniteAbelianGroup &A) |
|
void | atlas::abelian::to_array (GrpArr &a, GrpNbr x, const GroupType &t) |
|
void | atlas::abelian::to_array (GrpArr &a, const matrix::Vector< int > &v, const GroupType &t) |
|
void | atlas::abelian::toEndomorphism (Endomorphism &e, const matrix::PID_Matrix< int > &q, const FiniteAbelianGroup &A) |
|
GrpNbr | atlas::abelian::to_GrpNbr (const GrpArr &a, const GroupType &t) |
|
void | atlas::abelian::transpose (Endomorphism &e, const FiniteAbelianGroup &A) |
|
This is a partial and tentative implementation of the concept of a finite abelian group. Typically we have in mind the center of a reductive semisimple group.