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1. Graphs, Cells and Admissibility

We begin with a review of the basic concepts associated with admissible W -graphs,

following the lecture notes of last year [S1] and the more detailed recent paper [S2].

We assume throughout that W is a finite Weyl group, with distinguished generators

{si : i ∈ I}, where I is some finite index set (usually {1, 2, . . . , n}). We let pij denote the

order of sisj in W , or equivalently, the length of the braid relation satisfied by si and sj .

Recall that an I-labeled graph is a triple Γ = (V, m, τ), where

(1) V is a finite vertex set,

(2) τ is a map V → {subsets of I}, and

(3) m : V × V → Z[q±1/2] is a matrix of edge weights.

The (u, v)-entry of the matrix m is denoted m(u → v) and interpreted as the weight of

the edge u → v; having m(u → v) = 0 means that there is no such edge.

All I-labeled graphs we consider will also be required to be reduced; i.e.,

τ(u) ⊆ τ(v) ⇒ m(u → v) = 0 for all u, v ∈ V . (1.1)

The (reduced) I-labeled graph Γ is admissible if it is bipartite, all edge weights are

nonnegative integers, and it is edge-symmetric; i.e.,

m(u → v) = m(v → u) whenever τ(u) * τ(v) and τ(v) * τ(u).

Let MΓ denote the free Z[q±1/2]-module generated by the vertices of Γ.

The I-labeled graph Γ is a W -graph1 if the following operators on MΓ satisfy the braid

relations for (W, S):

Ti(u) =

{

qu if i /∈ τ(u),

−u + q1/2
∑

v:i/∈τ(v) m(u → v)v if i ∈ τ(u).
(1.2)

A W -graph is a cell if it is strongly connected.

Any operator having the form in (1.2) satisfies the quadratic relation (Ti−q)(Ti+1) = 0,

so MΓ carries an action of the Iwahori-Hecke algebra of (W, S) (if Γ is a W -graph), and

also provides (at q = 1) an integral representation of W .

Our initial motivation for studying admissible W -graphs is based on the simple observa-

tion that the W -graphs in Kazhdan-Lusztig theory, as well as in the representation theory

of real reductive groups, are admissible. The results obtained so far support our...

Main Contention 1.1. The study of admissible W -graphs and cells can provide con-

siderable insight into the structure of Kazhdan-Lusztig cells, Harish-Chandra cells, and

the larger W -graphs into which these cells are embedded.

1We have transposed the Kazhdan-Lusztig definition, but this modification has no effect on what

constitutes a W -graph.
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2. The Four Combinatorial Rules

There are four rules that characterize when an admissible I-labeled graph is a W -graph.

Definition 2.1. An I-labeled graph Γ = (V, m, τ) satisfies the W -Compatibility Rule

if for every edge u → v, every i ∈ τ(u) − τ(v) is bonded to every j ∈ τ(v) − τ(u) in the

Dynkin diagram of W .

Remark 2.2. (a) If τ(u) contains τ(v), then the above condition is vacuous.

(b) Every W -graph, admissible or not, obeys the W -Compatibility Rule.

(c) Recall that the W -Compatibility Rule can be reformulated in terms of the compat-

ibility graph Comp(W, S): the vertices of this graph are the subsets of I, and there is an

edge J → K for all J, K ⊆ I such that J * K and every j ∈ J − K is bonded to every

k ∈ K −J in the Dynkin diagram. To impose the W -Compatibility Rule is to require that

τ : Γ → Comp(W, S) is a graph homomorphism.

Note that if J ) K then there is always an edge J → K. Only the edges between

incomparable pairs J, K depend on the Dynkin diagram, and these latter edges are sym-

metric (i.e., J → K if and only if K → J). The symmetric parts of various compatibility

graphs are illustrated in Figure 1.

Definition 2.3. An I-labeled graph Γ = (V, m, τ) satisfies the Simplicity Rule if for

all edges u → v (i.e., m(u → v) 6= 0), either

(a) τ(u) ) τ(v) and m(v → u) = 0, or

(b) τ(u) and τ(v) are incomparable and m(u → v) = m(v → u) = 1.

We say that the edge u → v is an arc if (a) holds; it is a simple edge if (b) holds.

To describe the third rule, first consider what happens when an admissible I-labeled

graph Γ is restricted to a parabolic subgroup of rank 2, say 〈si, sj〉, then reduced as in (1.1)

and broken into strongly connected components. (The components are cells if Γ happens

to be a W -graph.) In the restricted graph, there are four possible τ invariants: {i, j}, {i},

{j}, and ∅. Each node with τ = {i, j} or τ = ∅ forms a singleton component (we regard

these as trivial by convention), so all other components must be composed of zero or more

symmetric edges each of which connects a vertex with τ = {i} to a vertex with τ = {j}.

Definition 2.4. An admissible I-labeled graph Γ satisfies the W -Bonding Rule if for

all i, j ∈ I that are bonded in the diagram of (W, S) (i.e., pij > 3), the nontrivial strongly

connected components in the {i, j}-restriction of Γ are A-D-E Dynkin diagrams whose

Coxeter numbers evenly divide pij .

Remark 2.5. (a) We could allow pij = 2 in the Bonding Rule, but this would be

redundant if the W -Compatibility Rule is also being imposed. (Only A1 has a Coxeter

number that divides 2.)
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Figure 1: Diagrams and compatibility graphs for A3, A4, and D4.

4



(b) Similarly, only A2 has a Coxeter number that divides 3. Thus if the Bonding Rule

is imposed for a pair i, j with pij = 3, then for every vertex u with i ∈ τ(u) and j /∈ τ(u),

there must be a unique vertex v adjacent to u with i /∈ τ(v) and j ∈ τ(v).

(c) The “Frontier Rule” in [S1] is the W -Bonding Rule for simply-laced W .

It seems highly likely that the following is true, but a proof seems to be elusive.2

Question 2.6. Given a rank 2 parabolic subgroup WJ
∼= I2(p), is every cell in the

WJ -restriction of a Harish-Chandra or Kashzdan-Lusztig W -cell also a Kazhdan-Lusztig

cell for WJ (i.e., either trivial or a Dynkin diagram of type Ap−1)?

If so, this suggests that we should add this requirement to the defining properties for

admissible W -graphs. Note that this would have an effect only for the multiply-laced

cases such as Bn or F4, but we have not gathered enough data on these cases to know how

significant it might be.

Remark 2.7. Although it is only a wild guess at this point, the connection between

admissible W -graphs and symmetric (i.e., A-D-E) Cartan matrices suggests that it might

be worthwhile to explore a variation of admissibility in which edge-symmetry is replaced

with edge-symmetrizability. Taking a cue from symmetrizable Cartan matrices, one could

hypothesize the existence of a diagonal change of basis that symmetrizes the edge weight

matrix m. More precisely, there should exist nonzero scalars λv (v ∈ V ) such that

λum(u → v) = λvm(v → u) whenever τ(u) * τ(v) and τ(v) * τ(u).

In any case, it is easy to show that this brings multiply-laced Dynkin diagrams into play

as cells for rank two groups, and in particular, allows the realization of the reflection

representation of B2, something that is impossible in the world of admissible cells.

Following up on a remark made by Peter Trapa at Atlas V, this suggests

Speculation 2.8. Are the “geometric cells” that arise in Springer’s construction edge-

symmetrizable?

Given an I-labeled graph Γ = (V, m, τ) and disjoint subsets J, K ⊆ I, let VJ/K denote

the set of vertices that include J and exclude K from their τ invariant; i.e.,

VJ/K = {v ∈ V : J ⊆ τ(v), τ(v) ∩ K = ∅}.

We will also use abbreviated forms of this notation, such as Vi/j in place of V{i}/{j}.

For distinct i, j ∈ I, a directed path u → v1 → · · · → vr−1 → v in Γ of length r > 2 is

defined to be alternating of type (i, j) if

u ∈ Vij/∅, vk ∈ Vi/j for k odd, vk ∈ Vj/i for k even, and v ∈ V∅/ij . (2.1)

2David Vogan informs me that this is true for p = 4, and that it follows from IC1.
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We let N r
ij(Γ; u, v) denote the edge-weighted count of all such paths from u to v; i.e.,

Nr
ij(Γ; u, v) :=

∑

v1,...,vr−1

m(u → v1)m(v1 → v2) · · ·m(vr−2 → vr−1)m(vr−1 → v),

where the vertices vk are restricted as in (2.1). Note that if Γ obeys the Simplicity Rule,

then all of the internal edges in an alternating path are simple and thus have unit weight;

only the initial and terminal edges u → v1 and vr−1 → v may be arcs of weight > 1.

Definition 2.9. An admissible I-labeled graph Γ satisfies the W -Polygon Rule if for

all distinct pairs i, j ∈ I and all vertices u, v with i, j ∈ τ(u) and i, j /∈ τ(v), we have

Nr
ij(Γ; u, v) = N r

ji(Γ; u, v) for r = 2, 3, . . . , pij ;

i.e., the weighted counts of alternating paths of length r of types (i, j) and (j, i) from u to

v are the same for all r 6 pij .

The “Diamond Rule” and “Hexagon Rule” used in [S1] are together equivalent to the

W -Polygon Rule when W is simply-laced.

Theorem 2.10 [S2]. An admissible I-labeled graph is a W -graph if and only if it

satisfies the W -Compatibility, Simplicity, W -Bonding, and W -Polygon Rules.

Although we are assuming that W is a finite Weyl group, it should be noted that

the above result is more generally valid as long as W is braid-finite (i.e., all pairs of

generators satisfy a braid relation of finite length). If W is not braid finite, there is a

similar characterization but it is messier to state.
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Figure 2: A D5-cell with three molecular components.

3. Molecules

Consider the problem of generating admissible W -graphs or W -cells from scratch. The

Compatibility, Simplicity and Bonding Rules provide fairly tight constraints on the forma-

tion of simple edges, and we can write software to generate all connected simple graphs

that meet those constraints. However, except for groups of low rank, there will generally

be infinitely many such graphs, most of which cannot occur in any W -graph.

The main point of this section is to describe how the W -Polygon Rule may be used

to impose further constraints on these graphs (and the weights of arcs connecting them).

Note that since these graphs are not full W -graphs, the application of this rule is subtle.

A. The Local Polygon Rule.

Let Γ = (V, m, τ) be an admissible W -graph, and define an equivalence relation on V

by declaring that u ∼ v if there is a path from u to v via simple edges. Since simple edges

are bi-directional, these equivalence classes are compatible with (and in general finer than)

the decomposition of Γ into cells. For example, there is a 20-vertex admissible D5-cell with

three such equivalence classes—see Figure 2.

Let U ⊂ V be one of the equivalence classes of vertices, and let Γ(U) be the correspond-

ing induced subgraph of Γ. (“Induced” means that all edges of Γ whose endpoints both

belong to U are included in Γ(U).) We call Γ(U) a simple component of Γ; later, it will

also make sense to call it a molecular component. As the example in Figure 2 illustrates,

some arcs of Γ may connect distinct simple components; other arcs may be internal to a

given component.
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Note that the simple components of Γ are admissible, and obey the W -Compatibility,

Simplicity, and W -Bonding Rules.

Fact 3.1 (The Local Polygon Rule). If Γ(U) is a simple component of an admissible

W -graph Γ, then for all i, j ∈ I and all r such that 2 6 r 6 pij , and all u, v ∈ U such that

i, j ∈ τ(u) and i, j /∈ τ(v), we have

Nr
ij(Γ(U); u, v) = N r

ji(Γ(U); u, v)

under any of the following conditions:

(a) r = 2, and there is an index k ∈ τ(v) − τ(u);

(b) r = 3, and there exist indices k, l ∈ τ(v)− τ(u) such that k is not bonded to i and

l is not bonded to j in the Dynkin diagram of W (possibly k = l); or

(c) r > 4, and there is an index k ∈ τ(v)− τ(u) such that k is not bonded to i or j in

the Dynkin diagram of W (i.e., (b) except that k = l is required).

That is, under these limitations, the Polygon Rule holds for each simple component of Γ.

We omit the proof, except to say that conditions (a)–(c) are designed to force either the

first or last step in every alternating r-step path of type (i, j) or (j, i) to be a simple edge.

Since all internal edges in such paths are simple (recall the discussion in §2), it follows that

such paths have at most one arc; all other edges are simple and have weight 1. Moreover,

every internal vertex in such a path is necessarily in the same simple component as either

the initial or terminal vertex. This yields

Fact 3.2. Every subgraph of an admissible W -graph that is induced by a union of

simple components obeys the Local Polygon Rule.

Definition 3.3. An admissible I-labeled graph Γ that satisfies the W -Compatibility,

Simplicity, W -Bonding and Local W -Polygon Rules is said to be a W -molecular graph.

If Γ has only one simple component, then it is said to be a W -molecule.3

The content of Fact 3.1 is that the simple components of admissible W -graphs are W -

molecules (thus we may also call them molecular components), and the content of Fact 3.2

is that any union of simple components in an admissible W -graph induces a W -molecular

subgraph. The converse generally fails: for a given a W -molecular graph Γ, there need

not exist an admissible W -graph into which Γ embeds. In such cases, we say that Γ is

unstable; otherwise it is stable.

Question 3.4. Are there only finitely many stable W -molecules?

Example 3.5. There are 13 stable D4-molecules (see Figure 3); none of them have

internal arcs, and 11 of them are also D4-cells. Only the 6-cycle and 12-cycle are not cells

by themselves, but they do occur in cells with more than one molecular component. The

remaining (unstable) D4-molecules consist of a family of 6k-cycles, one for each k > 3.

3We are open to suggestions for better terminology. Proteins?
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Figure 3: The stable D4-molecules.

Every admissible W -graph may be constructed by binding together suitable collections

of (stable) molecules with arcs, so one strategy for constructing all admissible W -cells from

scratch is to first construct all W -molecules. However, as the D4 example indicates, we

still have the prospect of having infinitely many W -molecules to analyze, and the problem

of identifying which ones are stable.

For W = An, we have generated all An-molecules for n 6 9; remarkably, we found that

not only are all of them stable, but they are precisely the Kazhdan-Lusztig cells! It is

natural to ask whether this trend continues for all larger n, but Remark 3.8 below explains

why it cannot.
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B. Generic molecules.

Suppose we are given an admissible I-labeled graph that satisfies the W -Compatibility,

Simplicity and W -Bonding Rules, and consists only of simple edges. Assuming it is also

connected, can we add suitable arcs so that the result is a W -molecule (i.e., satisfies the

Local W -Polygon Rule)?

In order to add an arc u → v, it must be the case that τ(u) ) τ(v). In addition, given

that the original graph is connected, it must also be the case that u and v are an even

distance apart, or the result would fail to be bipartite. If we treat the weights m(u → v)

as indeterminates, then every alternating path contributing to an instance of the Local

W -Polygon Rule has at most one such arc, so this rule amounts to a nonhomogeneous

linear system in these variables. One may regard the general solution of this system as a

“generic” molecule (assuming of course that the system is consistent).
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More precisely, we define Γ to be a generic W -molecule if it satisfies all of the defining

conditions for a W -molecule, except that

(1) it has arc weights that are affine-linear functions in some set of variables, and

(2) these variables parameterize the most general solution of the Local Polygon Rule

with the given set of vertices and simple edges.

We say that Γ is stable if some specialization of its variables is a stable W -molecule;

otherwise, it is unstable.

The dimension of a generic W -molecule is the dimension of the parameter space for its

arc weights; i.e., the number of independent variables.

In low ranks, all generic W -molecules are 0-dimensional and all arc weights are 0 or 1.

The smallest generic molecule we have found that has positive dimension is the 24-vertex

E6-molecule displayed in Figure 4 (and its dual). In this illustration, the red edges are

arcs of weight 1; the unique green edge is an arc of indeterminate weight—any nonnegative

integer assigned to it will produce an E6-molecule. If the assigned weight is 0, then the

resulting graph is an E6-cell (in fact, a Kazhdan-Lusztig cell), and no other specialization

yields a stable molecule.

It should be emphasized that the arcs of a generic molecule are determined from its

simple edges by straightforward linear algebra. Furthermore, these linear equations have

an especially simple form.

Probable Fact 3.6. The constraints imposed by the Local Polygon Rule may be

reduced to a linear system in which each equation has one of the forms m(u → v) = 0,

m(u → v) = 1, or m(u → v) = m(u′ → v′) for various arcs u → v and u′ → v′.

We call this a “probable fact” because we have (so far) proved it only in the simply-laced

case. Even if it turns out to be false for (say) B8, the ramifications would be minimal;

nothing that follows will be significantly affected beyond the fact that it may be more

cumbersome to impose the condition that all arc weights in a molecular graph must be

nonnegative integers.

Example 3.7. Consider the A3-graph in Figure 5. If we regard the arc weights in this

graph as indeterminates and impose the Local Polygon Rule, an analysis of the alternating

paths of type (1, 3) and (3, 1) from u = 13 to v = 2 yields the relation

m(13 → 1) + m(12 → 2) = m(13 → 3) + m(23 → 2), (3.1)

which seems to contradict Probable Fact 3.6. However, analyzing the alternating paths of

type (1, 2) and (2, 1) from u = 12 to v = 3 yields the relation m(12 → 2) = m(13 → 3),

and a similar analysis of paths from u = 23 to v = 1 yields m(13 → 1) = m(23 → 2),

so (3.1) is redundant. In fact, any solution of the latter pair of equations satisfies the full

Polygon Rule and thus yields an A3-graph.
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Remark 3.8. Recall that McLarnan and Warrington [MW] have shown that there

are Kazhdan-Lusztig cells for A15 that have edge-weights > 1. Furthermore, it is known

that all type A Kazhdan-Lusztig cells consist of single molecules.4 Comparing this with

Probable Fact 3.6, we see that there must be at least one (stable) generic A15-molecule with

at least one free parameter. It is conceivable that all (nonnegative integer) specializations

of these parameter(s) yield stable molecules, but Kazhdan-Lusztig cells for An are known

to be combinatorially rigid, so even if by some miracle all A15-molecules turn out to be

stable, they cannot all occur in Kazhdan-Lusztig cells.

Remark 3.9. Not every stable molecule occurs in some Kazhdan-Lusztig cell. For

example, there is a 40-vertex generic E6-molecule that is stable and 0-dimensional, but

occurs only in cells that are not Kazhdan-Lusztig cells.

4Thanks to David Vogan for pointing this out to me.
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4. Uniform Molecules

In this section, we assume that W is simply-laced and irreducible.

We say that a W -molecule Γ = (V, m, τ) is k-uniform if the τ invariant of every vertex

has cardinality k. Since there are no proper inclusions of k-subsets, it follows immediately

that uniform molecules cannot have arcs. In particular, they are trivially generic.

If Γ is k-uniform, one can think of the τ invariant of a vertex v as a configuration of

k marbles occupying distinct nodes of the Dynkin diagram of W . According to the W -

Compatibility Rule, following a simple edge from v corresponds to moving one marble to

an adjacent unoccupied node.5 Conversely, by the W -Bonding Rule, for each legal way to

move a marble in the configuration of τ(v), there must be a unique vertex u adjacent to v

whose τ invariant corresponds to that move.

It follows that if there are r vertices in Γ with τ invariant J , then there must also be r

vertices with τ invariant K for each k-subset K adjacent to J in the compatibility graph

of W , and the (simple) edges between these two r-tuples of vertices must form a perfect

matching. Since W is assumed to be irreducible, we can reach any k-subset from any

other k-subset by moving marbles around, so there must be exactly r vertices in Γ with τ

invariant K for every k-subset K ⊂ I.

Thus, one may view every k-uniform W -molecule as an r-fold cover of Compk(W, S),

the subgraph of Comp(W, S) induced by the k-subsets of I. For example, every 3-uniform

E6-molecule is an r-fold cover of the graph in Figure 6, for some r > 1.

On the other hand, since we have not yet imposed the Local Polygon Rule, it should

be expected that not every r-fold cover of Compk(W, S) is a W -molecule. Indeed, let

us consider the possibilities for a 2-step alternating path of type (i, j) for some covering

graph Γ. This can be achieved only by moving two marbles, one occupying the j-th node

(and moved first), and the second occupying the i-th node (and moved second, to some

position other than i or j). One can move the marbles in either order to achieve the same

result, and it is not hard to see that the Local Polygon Rule forces the endpoints of the

5This requires the Dynkin diagram of W to have no 4-cycles.

13



j

i

→ j

i

→ j

i

→ j

i

Figure 7: An alternating 3-step path.

two alternating paths to be the same vertex in the covering graph.

In other words, each 4-cycle in Compk(W, S) that is obtained by moving two marbles to

two new nodes and back6 is flat; i.e., it lifts to r disjoint 4-cycles in the covering graph Γ.

In particular (taking r = 1), the graph Compk(W, S) itself always satisfies the 2-step Local

Polygon Rule.

Since we are assuming W is simply-laced, the only remaining consequences of the Local

Polygon Rule involve 3-step alternating paths. It is not hard to show that such a path of

type (i, j) can exist only if the Dynkin diagram has a fork at node j, and two unoccupied

nodes are bonded to j in addition to (occupied) node i (see Figure 7). Given that W

is a finite Weyl group, there cannot be a second fork at node i, so Γ cannot have any

alternating 3-step paths of type (j, i) (and hence, cannot be a W -graph). However, this

does not contradict the Local Polygon Rule, since the terminal vertex of the 3-step path

illustrated in Figure 7 has a τ invariant that contains exactly two nodes not in the initial τ

invariant, and both of these nodes are bonded to j, so these alternating paths are ignored

by the Local Polygon Rule (see part (b) of Fact 3.1). Summarizing,

Fact 4.1. If W is simply-laced and irreducible, then the k-uniform W -molecules are

the connected r-fold covers of Compk(W, S) in which every 4-cycle is flat. Furthermore,

(a) the k-subset graph Compk(W, S) is a W -molecule,

(b) if the diagram of W is linear (i.e., W = An), then the only uniform W -molecules

are the k-subset graphs (i.e., r = 1), and these molecules are W -cells, and

(c) if the diagram of W has a fork and 2 6 k 6 |I| − 2, then there are infinitely many

k-uniform W -molecules, and none of them are cells.

The remaining issues for uniform molecules are: (1) how to identify in a systematic way

the “flat” r-fold covers of Compk(W, S), and (2) how to decide which ones are stable.

Flat covers.

To generate r-fold covers with flat 4-cycles, one approach is to number the vertices with

a given τ invariant from 1 to r, and think of these numbers as defining a partition of

the covering graph into r layers. The extra information needed to specify the cover is a

collection of permutations of {1, . . . , r}, one for each edge in Compk(W, S).

On grounds of sanity alone, we would prefer that as many of these permutations as

possible are trivial, and only connect vertices in the same layer. So we can start by

6One can show that every 4-cycle in Compk(W,S) has this form.
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choosing a spanning tree of Compk(W, S), and insist that the permutation associated to

each edge in the spanning tree is trivial. We can then start adding additional edges of

Compk(W, S) to this spanning tree as long as the new edge creates a 4-cycle, and repeat

until this is no longer possible. The point is that the flatness of the 4-cycle forces the

permutation associated to each new edge to also be trivial.

If we are lucky, the process will end when we run out of edges, thereby forcing every

edge-permutation to be trivial. In this case, there could only be one layer; otherwise,

the covering graph would be disconnected. This is exactly what happens in type A, and

explains part (b) of Fact 4.1. (It also happens when k = 1 or |I| − 1.)

On the other hand, if W has a forked diagram and 2 6 k 6 |I|−2, then there will be one

or more 6-cycles that need not be flat.7 Indeed, one can see from Figure 7 that alternating

3-step paths in Compk(W, S) occur in pairs: one has a choice of moving the marble at the

fork into either of the two adjacent unoccupied nodes. These two paths have the same

endpoints in Compk(W, S), thereby creating a 6-cycle. However, these endpoints need not

be the same in the covering graph, and it is not hard to construct explicit examples (with

flat 4-cycles) where this happens.

Example 4.2. (a) In the case of D4, the 2-uniform compatibility graph is a 6-cycle,

and a spanning tree consumes all but one of its edges. Thus, an r-fold cover of Comp2(D4)

is parameterized by a single permutation. However, since a molecule must be connected,

this single permutation must be an r-cycle, and all such permutations yield the same

D4-molecule up to isomorphism.

(b) Consider the 3-uniform compatibility graph for E6 (recall Figure 6). It is not hard

to discover that one can choose a spanning tree of this graph and add 4-cycle-creating

edges until (say) only the edges 123 124 and 356 456 remain. Thus the 3-uniform E6-

molecules may be parameterized by pairs of permutations of r objects for various r > 1.

Of course, not all such pairs will parameterize connected graphs, and it is tricky to decide

when two such graphs will be isomorphic. However, these are moot points, since it turns

out that only four of the 3-uniform E6-molecules are stable (see Fact 4.4).

Stability.

Suppose Γ is a k-uniform W -molecule of index r. How do we decide if Γ is stable?

Of course we should assume that 2 6 k 6 |I| − 2 and that W has a forked diagram;

otherwise, Γ is a cell and the question is easy.

To answer this in general, we need to know about all of the other W -molecules that

could occur together with Γ in an admissible W -cell. While the details are nontrivial (and

omitted), there are a few easy comments in this direction that we should make, since they

narrow the scope of this problem significantly.

The main point to make is that, as mentioned previously in Example 3.5, the only

2-uniform D4-molecules that are stable are the 1-fold cover and the 2-fold cover; i.e., a

7The exact number of such 6-cycles is
`

n−2

k−2

´

, where n = |I|.
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6-cycle and a 12-cycle. (The fact that the r-fold covers for r > 3 are not stable is explained

in Section 5 of [S2].) Thus by restriction, this carries over to any of the “type D4” 6-cycles

in Compk(W, S) afforded by moving marbles around the fork as in Figure 7. Thus,

Fact 4.3. In a stable uniform W -molecule Γ, every 6-cycle of type D4 in the k-uniform

compatibility graph of W lifts to a disjoint union of 6-cycles and 12-cycles in Γ.

For example, recall from Example 4.2(b) that a 3-uniform E6-molecule Γ of index r is

parameterized by pairs of permutations of r objects, say (π1, π2). The first permutation

specifies the twisting of edges between layers that connect the r vertices with τ invariants

123 and 124, and the second permutation specifies the analogous edge-twisting between τ

invariants 356 and 456.

According to Fact 4.3, a necessary condition for Γ to be stable is that π1 and π2 must be

involutions. This severely cuts down the number of distinct possibilities. If we contract all

other edges in the graph (their structure is completely determined), what remains consists

of r points, together with a collection of black edges (from π1) and white edges (from π2).

The fact that the permutations are involutions means that each point has one black edge or

loop incident to it, and one white edge or loop. Given that the graph must be connected,

this means that there are only two possibilities: an alternating black-white r-cycle for even

r (we call these cyclic r-fold covers), or an alternating black-white path of length r − 1,

with loops of the appropriate colors at both endpoints (we call these linear r-fold covers).

For example, the cyclic 6-fold cover is obtained by choosing

π1 = (1, 2)(3, 4)(5, 6), π2 = (2, 3)(4, 5)(6, 1),

and the linear 7-fold cover is obtained by choosing

π1 = (1, 2)(3, 4)(5, 6)(7), π2 = (1)(2, 3)(4, 5)(6, 7).

Using the binding voodoo described in Section 5, we are able to show

Fact 4.4. The stable 3-uniform E6-molecules are the linear 1-fold and 3-fold covers

and the cyclic 2-fold and 6-fold covers of the 3-uniform compatibility graph.

The classification of stable 4-uniform E8-molecules is likely to be very interesting.

We should add that a fortuitous accident that has made the classification of admissible

cells for E6 and D6 easier is that there are only finitely many non-uniform generic molecules,

and all of them turn out to be stable! We are skeptical that this holds in E7 and E8;

nevertheless, we should at least raise

Pessimistic Question 4.5. Are there finitely many non-uniform generic molecules?

Is every unstable generic molecule uniform?

Bear in mind that we haven’t touched on the multiply-laced cases.

Problem 4.6. What is the analogue of a uniform molecule in the multiply-laced cases?
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5. Bindings

We now turn to the problem of using arcs to bind a collection of W -molecules into a

W -graph. In keeping with the philosophy that we should exhaust linear algebraic methods

first before confronting nonlinear ones (or worse, Diophantine issues), we first address the

easier problem of binding a collection of W -molecules into a molecular graph; i.e., we

impose only the Local Polygon Rule on the output, rather than the full Polygon Rule.

A. Binding spaces and p-molecules.

Suppose Γ1 and Γ2 are W -molecules. If we attempt to create a molecular graph by

adding arcs between Γ1 and Γ2, we cannot do so arbitrarily, or there is a risk that we will

create a graph that is not bipartite, and hence inadmissible.

Thus to be careful, we should be working in a more refined category of molecules-

with-parity (or p-molecules, for short): each vertex must have a designated parity (odd or

even), and all edges, both simple edges and arcs, must have endpoints of opposite parity.

Of course, molecules are internally connected by simple edges, so designating the parity of

any one vertex determines the parity of all vertices within the molecule. More generally,

the vertex parities of a p-molecular graph are determined by a choice of parity for one

vertex from each weak connected component.

Now suppose that Γ1 = (V1, m, τ) and Γ2 = (V2, m, τ) are two W -molecules with parity.

For each opposite-parity vertices v1 ∈ V1 and v2 ∈ V2 such that τ(v1) ) τ(v2), we may

hypothesize the existence of an arc v1 → v2 with some unknown weight m(v1 → v2),

possibly 0. We define the W -binding space B(Γ1 → Γ2) to be the set of assignments for

these arc weights that satisfy the Local W -Polygon Rule.

Recall that the Local Polygon Rule imposes linear equations on all unknown arc weights.

However, unlike the case of arcs internal to a single molecule, all alternating paths from Γ1

to Γ2 relevant to the Local Polygon Rule will necessarily use exactly one arc of unknown

weight. Thus the resulting linear equations are homogeneous, and the trivial solution is

always available. Furthermore, no alternating path from Γ1 to Γ2 may use any arc internal

to Γ1 or Γ2, so the binding space is unchanged if we delete all such arcs from Γ1 or Γ2, or

replace them with their generic counterparts.

If we want the p-molecular graph corresponding to some point in the binding space to

be admissible, we should also insist that the assigned arc weights are nonnegative integers.

However, we prefer to think of the W -binding space as a Z-module. In any case, Probable

Fact 3.6 shows that every point in a binding space is obtained by setting certain arc weights

equal to 0, and certain arc weights equal to each other, so in practice there is no extra

difficulty involved in requiring the use of nonnegative integers.

Example 5.1. Consider the D5-cell in Figure 2. It is a binding of three p-molecules:

two copies of a 5-vertex molecule Γ0, and one copy of the 2-uniform D5-molecule Γ1 of

index 1. The fact that there are arcs in this cell between Γ1 and both copies of Γ0 (and in

both directions) provides proof that the binding spaces B(Γ0 → Γ1) and B(Γ1 → Γ0) are
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both nonzero. Moreover, it is not hard to show that both binding spaces are 1-dimensional;

all of the arcs from a copy of Γ0 to a copy of Γ1 (say) that have unit weight in the D5-cell

must have equal weight in the binding space.

If Γ is any p-molecule, we let −Γ denote the p-molecule obtained by reversing the parity

of all vertices in Γ. Note that the binding spaces B(Γ1 → Γ2) and B(−Γ1 → −Γ2) are

naturally isomorphic. Of special interest are self-bindings; i.e., nontrivial points in the

binding spaces B(Γ → Γ) (even self-bindings) and B(Γ → −Γ) (odd self-bindings).

To avoid confusion, we should clarify that the even self-binding spaces B(Γ → Γ) involve

two distinct copies of Γ, not a single copy. We could also define internal binding spaces

involving a single copy of Γ, but the resulting spaces would amount to nothing but an

alternative way to define generic molecules.

Recall that a generic molecule is defined to be stable if some specialization of it occurs

as a component of some admissible W -graph. Analogously, we define a binding space

B(Γ1 → Γ2) to be stable if there is a nonzero element of this space such that the resulting

two-molecule graph is stable; otherwise, it is unstable.

B. The bindability graph.

We define the bindability graph BG(W, S) to be the directed graph whose vertices are

the isomorphism classes of generic W -molecules and whose edges are of the form

Γ → Γ′ whenever B
(

±Γ→± Γ′
)

6= 0;

i.e., there is an edge whenever there exists a choice of parities for both Γ and Γ′ so that

the corresponding binding space is nonzero. Similarly, we define the stable bindability

graph BGst(W, S) to be the subgraph of BG(W, S) obtained by keeping only the vertices

corresponding to stable molecules and the edges corresponding to stable bindings.

Easy Fact 5.2. Every admissible W -cell may be constructed by binding together one

or more generic W -molecules from some strongly connected component of BG(W, S) and

specializing the variables. Similarly, the same is true for BGst(W, S), and more generally

for any graph that interpolates between BGst(W, S) and BG(W, S).

The stable bindability graph is the most useful of these graphs, but it is difficult to pin

it down exactly until after one has a classification of admissible W -cells. Starting from

scratch, one would initially build something close to the full bindability graph, and refine

it while accumulating information about which molecules and bindings are stable.

Regardless, the stable bindability graph provides a natural way to partition admissible

W -cells into families: for each strongly connected component C of BGst(W, S), family C

consists of all admissible W -cells whose constituent molecules all belong to C.

Recall that when the strongly connected components of any graph are contracted to

points, the remaining edges form an acyclic directed graph whose transitive closure is a

poset. In Figure 8, we have displayed a few of these posets for the subgraph of BG(W, S)
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1: 1

2: 5

3: 4 4: 10

5: 5, 1.10, 2.10

6: 20

7: 6 8: 10

9: 20

10: 5, 1.10, 2.10

11: 4 12: 10

13: 5

14: 1

1: 1

2: 6

3: 5 4: 15

5: 10 6: 10

7: 9, 1.15, 2.15

8: 5, 25, 30, 40, 80

9: 10

10: 45

11: 40[1] 12: 40[1] 13: 16, 1.20, 2.20

14: 45

15: 10

16: 5, 25, 30, 40, 80

17: 9, 1.15, 2.15

18: 5

19: 10 20: 10

21: 15

22: 6

23: 1

1: 1

2: 6

3: 20

4: 15, 1.15, 2.15

5: 64

6: 24[1] 7: 60

8: 81[4]

9: 10, 50[2],
1.20, 2.20, 3.20, 6.20

10: 81[4]

11: 24[1] 12: 60

13: 64

14: 15, 1.15, 2.15

15: 20

16: 6

17: 1

Figure 8: The partial ordering of molecular families for D5, D6, and E6.
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induced by the stable generic W -molecules. In general, this graph may have more edges

and fewer strongly connected components than BGst(W, S) (see Remark 5.3(b) below) but

it is easier to compute.

Regarding the annotations in Figure 8, each strongly connected component is labeled

by a number, followed by a list of vertex cardinalities for the generic molecules in that

component. The vertex cardinalities are further refined by suffixes indicating the dimen-

sion of the molecule (no suffix means 0-dimensional), and (when the molecule is uniform)

prefixes indicating the index of the covering map. For example, the label 7 : 9, 1.15, 2.15

means that component 7 contains three 0-dimensional molecules: one with 9 vertices, and a

1-cover and 2-cover of a uniform molecule with 15 vertices. The label 12 : 40[1] means that

component 12 consists of a single 1-dimensional generic molecule with 40 vertices. Also,

some of the components are drawn as boxes rather than ovals. These boxed components

are singletons with non-trivial self-bindings: odd if shaded, even if unshaded.

Remark 5.3. (a) If a component of BG(W, S) is a singleton C = {Γ} and Γ has no

self-bindings, then Γ can only appear by itself in an admissible W -cell. In that case, one

simply needs to check that Γ specializes to a W -graph (thereby confirming it to be stable).

One may then conclude that specializations of Γ are the only W -cells in family C. This

leaves only components 5, 8, 10 in D5, 7, 8, 11–13, 16, 17 in D6, and 4, 6–12, 14 in E6.

(b) For D5 and E6 the extra (unstable) edges we used in constructing Figure 8 have

no effect on the partition into strongly connected components, but in the case of D6, it

turns out that components 8 and 16 split into two components each in the stable bindability

graph: the 30-vertex molecules are each in singleton components and have odd self-binding.

These W -cell families are quite remarkable; we mention here a few of the questions

raised by the data we have gathered so far.

Question 5.4. Let C be a strongly connected component of BGst(W, S).

(a) Is there a unique generic molecule Γ = ΓC in C that occurs as a molecular compo-

nent of every admissible W -cell in family C?

(b) Is there a specialization of ΓC that yields an admissible W -cell?

(c) Are the W -representations generated by admissible W -cells from distinct families

orthogonal (i.e., have no irreducible constituents in common)?

Remark 5.5. (a) We know that Question 5.4(b) fails for W = H3. There is a compo-

nent of BGst(H3) that consists of a single 4-vertex molecule Γ with odd self-binding, and

the only admissible H3-cell in this family is a binding of two copies of Γ. So we are not

proposing to extend the domain of this question beyond the crystallographic groups.

(b) Regarding (c), we could construct an undirected graph on the set of admissible

W -cells by declaring two such cells adjacent if their W -representations have at least one

irreducible constituent in common. It is reasonable to speculate that the W -cell families

defined above are the connected components of this graph.
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Another remarkable property of the W -representations generated by admissible W -cells

is that they seem to depend (up to isomorphism) only on the multiset of generic molecules

used to construct them, and not on the weights of the arcs that bind them. If true,

this would explain (in my opinion) the phenomenon of “combinatorial rigidity” for cell

representations discussed briefly in [S1] and [S2]. An even stronger version of this is

Question 5.6. Is it possible to attach a virtual W -character to each (stable) generic

W -molecule so that the character of every admissible W -graph is the sum of the virtual

characters of its molecular components?

There is a well-known partition of Kazhdan-Lusztig cells in which two left cells are placed

in the same block if and only if they occur in the same 2-sided cell, or equivalently, if the

W -representations they generate include the same special representation of W among their

constituents. In particular, a positive answer to Question 5.4(c) would imply a positive

answer to the following.

Question 5.7. Are the molecular components of the left Kazhdan-Lusztig cells in a

two-sided cell all contained in a single strongly connected component of BGst(W, S)?

It would be nice if there were a bijection between two-sided cells and the components

of BGst(W, S), but there are 27 two-sided D6-cells whereas BGst(D6) has 25 components.

In particular, the two sets of D6-molecules in components 8 and 16 in Figure 8 are each

unions of two components of BGst(D6) (recall Remark 5.3(b)). On the other hand, they

contain the (left) molecular components of 3 two-sided Kazhdan-Lusztig cells.
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6. Cell Synthesis

Once we have collected enough information about W -molecules and their bindings, we

are ready to classify admissible W -cells.

A. Encoding the parameter space.

Suppose Γ1, Γ2, . . . is a list of generic molecules with parity that are selected from a

single component of the bindability graph for W . Although we may not know yet whether

any molecules in our list are stable, we want to determine all admissible W -graphs that

can be built using n1 copies of Γ1, n2 copies of Γ2, and so on. We would expect that there

will be infinitely many such graphs, but perhaps only finitely many that are cells.

By Probable Fact 3.6, we can select bases for each binding space B(Γk → Γl) and the

internal arc spaces for each Γk so that the points in these spaces with nonnegative integer

arc weights are precisely the nonnegative integer combinations of the basis elements. In

this way, the free parameters needed to specify a W -molecular graph Γ with the desired

components may be encoded by a collection of nk × nl matrices of nonnegative integers.

More precisely, if the binding space B(Γk → Γl) has dimension d, then the arcs from

each copy of Γk to each copy of Γl are encoded by a d-tuple of nk × nl matrices, say

A1
kl, . . . , A

d
kl. If d = 1, we may omit the superscript and simply write Akl.

It is important to note that the case k = l requires special considerations. Here, the

matrices A1
kk, A2

kk, . . . are square, but the diagonals must be regarded as identically 0 by

convention. The point is that a diagonal entry would encode the weights of certain arcs

from one copy of Γk to the same copy. While there is certainly a natural set of arcs

internal to each Γk; namely, the ones that participate in its internal binding space, the

dimension of this space need not be the same8 as the dimension of the even self-binding

space B(Γk → Γk). Thus, we should encode the choice of internal arc weights in the nk

copies of Γk by an e-tuple of nk × nk diagonal matrices B1
k, . . . , Be

k, where e = dim Γk.

If nature is kind to us, there will be a natural identification between the internal arc

space of the molecule Γk and its even self-binding space, in which case we can drop the

convention of zero diagonals and replace (say) A1
kk with B1

k + A1
kk.

While the structure of these parameter sets may seem complicated, one finds that in

practice, if molecules are chosen from within a strongly connected component of the bind-

ability graph, then most binding spaces have dimension 0 or 1, and if B(Γk → Γl) is

nonzero, then the opposite space B(Γk → −Γl) is usually 0; i.e., the relative parity of all

molecules is often forced.

Example 6.1. In Figure 9, we provide a graphic representation of the binding space

dimensions for a few of the more complicated components of the bindability graphs for

D5, D6 and E6. Each molecule is represented by two nodes, corresponding to the two

8Update: This is not clear. Certainly one needs to keep in mind that the internal binding space is
affine, whereas the even self-binding space is central. It may still be that there is a natural identification

between the two, in which case this entire section may be more complicated than it needs to be.
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-2.10-5-1.10

1.10 5 2.10

(a) Component 5 of D5.

-30 30

80 40

-25

-5

-40

4

-80

8

5

8 4

25

3 3

(b) Component 8 of D6.

-6.20

-2.20

-1.20

-3.20

50[2] 10 -10 -50[2]

6.20

3

2.20

1.20

3.20

3

(c) Component 9 of E6.

Figure 9: Binding space dimensions for various components of BG(W, S).
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ways of assigning parity. Blue edges are abbreviations for spaces of equal dimension in

both directions. Thin edges are used for 1-dimensional spaces; thick edges for spaces with

dimension > 2. If the dimension is > 3, it is labeled. Note that an edge (necessarily

blue) between a node and its opposite indicates a nonzero odd self-binding space; a loop

indicates an even self-binding space. Nontrivial internal binding spaces are indicated in

the node labels; e.g., the suffix “[2]” indicates an internal space of dimension 2.

In Figure 9(b), the two 1-dimensional binding spaces from the 25-vertex p-molecules

to the 30-vertex p-molecules turn out to be unstable. This isolates the two 30-vertex

p-molecules in a separate component of the stable bindability graph for D6, as noted

previously in Remark 5.3(b). In Figure 9(c), the odd-self binding space for the 10-vertex

p-molecule also turns out to be unstable; deleting the corresponding edge disconnects the

graph and cuts in half the number of distinct p-molecules one needs to consider.

B. Imposing the braid relations.

Any nonnegative integer specialization of the above parameter space will produce an ad-

missible W -molecular graph Γ. Determining which specializations are W -graphs amounts

to imposing the full Polygon Rule. To analyze this, fix a distinct pair of indices i, j ∈ I

and consider the evaluation of weighted counts of alternating r-step paths of type (i, j)

between pairs of vertices u, v; i.e., the quantities N r
ij(Γ; u, v).

By identifying the vertices in the various copies of Γk, we can think of u varying over

the vertices in a single abstract copy of Γk and similarly v varying over Γl, with the result

that for fixed k and l, one should view N r
ij(Γ; u, v) as an nk × nl-dimensional matrix.

Recall that only the first and last steps in an alternating path may be arcs—all other

steps must be along simple edges. Thus if k 6= l, an alternating path from an instance of

u in some copy of Γk to an instance of v in some copy of Γl must either

(1) jump from u along an arc immediately into some third molecule, say a copy of Γt,

follow a simple path in that molecule, and then jump from that molecule along an

arc that terminates at v, or

(2) jump from u along an arc immediately into the molecule containing v, and then

follow a simple path to v (the last step may optionally be an internal arc), or

(3) follow a simple path starting at u (optionally the first step may be an internal arc),

and then jump from that molecule along an arc that terminates at v.

Since the net contributions of these paths is multilinear in the parameterizing arc weights,

it follows that the matrix N r
ij(Γ; u, v) may be expressed as an explicit nonnegative integer

combination of the matrices

Ax
ktA

y
tl, Ax

klB
y
l , Bx

kAy
kl, Ax

kl (6.1)

for all sensible values of x, y, t. Furthermore, the coefficients in this linear combination

may be computed from a single generic binding of one copy each of Γk, Γl, and Γt; in

particular, they depend only on x, y, k, l, t (and of course u, v, i, j and r).

24



When k = l, the same considerations apply when we are computing the off-diagonal

entries N r
ij(Γ; u, v) (i.e., when u and v are selected from distinct copies of Γk). However,

in the diagonal case, cases (2) and (3) above do not occur, and this is reflected in the

fact that the diagonal entries of the last three groups of matrices in (6.1) are necessarily

zero. Instead, an alternating path from u to v may use edges internal to the molecule, and

optionally start or finish with an arc internal to Γk. Thus, the diagonal matrices

Bx
kBy

k , Bx
k , 1

must be used to supplement the list in (6.1) when k = l.

In these terms, the Polygon Rule amounts to the condition that the matrices N r
ij(Γ; u, v)

depend symmetrically on i and j.

The key point of this analysis is that the unbounded multiplicities nk affect only the sizes

of the matrices, not the number or form of the matrix equations that must be imposed.

While the number of such equations may seem potentially large, it should be noted that

in any instance of the Polygon Rule, we must have i, j ∈ τ(u) and i, j /∈ τ(v). Secondly,

since the Local Polygon Rule has already been imposed throughout our parameter space,

we may further assume that none of the conditions (a)–(c) listed in Fact 3.1 apply. Third,

many of the equations are redundant; in practice, the number of independent equations

tends to be less than the square of the number of distinct molecules.

C. Case study: a family of D5-cells.

Consider the problem of classifying all of the admissible D5-cells that can be constructed

out of molecules from component 5 of D5 (see Figure 8). There are three such molecules:

a non-uniform 5-vertex molecule and a single and double cover of the 10-vertex 2-uniform

compatibility graph for D5. We let Γ0, Γ1 and Γ2 denote these graphs.

Note that the D5-cell in Figure 2 is composed of two copies of Γ0 and one copy of Γ1.

The dimensions of the binding spaces for these generic molecules are illustrated in

Figure 9(a). Note that they are all 0-dimensional, and their relative parities are forced

whenever they appear together in a molecular graph, so we may assume that Γ0, Γ1 and

Γ2 have been assigned fixed parities that are mutually compatible.

Following the parameterization described in §6A, one may use four nonnegative integer

matrices A10, A01, A20 and A02 to describe every admissible molecular graph that may be

constructed out of these components. When the Polygon Rule is converted to a system of

matrix equations as in §6B, one obtains

A10A01 = 2, A20A02 = 1, A10A02 = 0, A20A01 = 0

as necessary and sufficient conditions for the result to be a D5-graph.

A consequence of the last two equations is that there cannot be a directed path from any

copy of Γ1 to any copy of Γ2. However, given that the graphs we are aiming to construct

must be strongly connected, it follows that one cannot use both graphs. Furthermore,
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since A10A01 and A20A02 are diagonal matrices, there cannot be directed paths between

any two copies of Γ1 or any two copies of Γ2. Again by connectivity considerations, it

follows that the graph has at most one copy of Γ1 or Γ2, and cannot have both.

If we have one copy of Γ2 (and none of Γ1), then the matrices A10 and A01 do not exist,

and our system reduces to a single matrix equation: A20A02 = [1]. Up to row and column

permutations, all solutions have the form A20 = [1, a2, a3, . . . ], AT
02 = [1, b2, b3, . . . ], where

akbk = 0 for all k > 2. However, any 0’s in these matrices would correspond to copies of

Γ0 that cannot be reached from Γ2 or vice-versa, so A20 = A02 = [1] is the unique strongly

connected solution.

If we have one copy of Γ1 (and none of Γ2), then our system reduces to the matrix

equation A10A01 = [2]. Recognizing there cannot be 0’s in A10 or A01 in order to produce

a strongly connected solution, it is not hard to see that there are three cellular solutions:

A10 = AT
01 = [1, 1], A10 = 2A01 = [2], and 2A10 = A01 = [2].

Finally, if there are no copies of Γ1 or Γ2, then there are no equations. This means that

Γ0 is itself a cell, and since the self-binding space of Γ0 is zero, it follows that the only

D5-graphs whose molecular components are copies of Γ0 are disjoint unions.

Summarizing, we see that there are five admissible D5-cells in this family:

• one 25-vertex cell with molecular components Γ2 and Γ0,

• one 20-vertex cell with one copy Γ1 and two copies of Γ0 (see Figure 2),

• two 15-vertex cells with components Γ1 and Γ0, and

• one 5-vertex uni-molecular cell, Γ0.

Only the 25-vertex and 20-vertex cells are Kazhdan-Lusztig cells.

7. Miscellany

We should say a bit more about how we have determined complete lists of generic

molecules. The short answer is software. We have code (so far, only for the simply-laced

case) that will take as input a set of allowed τ invariants and a seed graph Γ0, and generate

all generic molecules that contain Γ0 and use only the allowed τ invariants.

If there are infinitely many such molecules, it will run forever.

However, by the fortuitous accident related to Pessimistic Question 4.5, the only infinite

families of generic molecules we have encountered are uniform, and as outlined in §4, we

have a pretty good handle on their structure. So we only need software for the non-uniform

molecules. In these cases, we can examine the compatibility graph for symmetric edges

between subsets of I of unequal cardinality, and uses these as seeds for the software. As

long as each of these seeds terminate with a finite list of molecules, we are in business.

We are not planning for E7 and E8 to be as cooperative.
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8. What’s Next?

A. Molecular induction? We think that a more promising approach to identifying the

stable generic molecules for E7 and E8 is to exploit restriction. Every WJ -restriction of a

stable W -molecule is a stable WJ -molecular graph. Starting with a list of stable generic

WJ -molecules, one can analyze all of the ways to bind these molecules into W -molecules,

and from there hope to prune out the unstable ones. Note that the Howlett-Yin papers

[HY1] and [HY2] on inducing W -graphs might be relevant.

B. Lacking a complete list of stable molecules for E7 and E8, it may be worthwhile to

solve a lazier version of the classification problem: extract the generic molecules that occur

in the real forms of E7 and E8 and determine all admissible cells that can be built from

them. This would be an especially worthwhile exercise if it leads to the discovery that

there are infinitely many admissible E8-cells, for example.

C. Does the “irreducible” case live up to its name? Less cryptically, can we prove that

if there are finitely many admissible W1-cells and W2-cells, then there are finitely many

admissible W1 × W2-cells?

The classification of admissible I2(p) × I2(q)-cells looks very interesting. It is roughly

equivalent to classifying all commuting pairs of symmetric Cartan matrices of finite type.

We do not yet know the complete answer, but in any case, we can show that there are only

finitely many for a given choice of p and q.

D. Extend the classifications of admissible cells deeper into the list of multiply-laced

Weyl groups: F4, B4, B5, . . . , and perhaps also H4.

E. Possibly transform the (Maple) software for manipulation, generation and display of

W -graphs into something more presentable in public. It is hard to draw the line between

parts of the code that should be considered private one-time hacks versus code that could

have wider utility. The amount of work involved depends on whether the potential user

base is 1 or 2 others, or 10, or 50.
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