1. Signatures and Cohomological induction

Setting:
$$G$$
 real red. Lie gp $\supset K$ maximal cpt $\leadsto \theta$ Cartan involution \mid \mathfrak{g}_0 \mathfrak{k}_0

 $\mathfrak{g} = \mathfrak{g}_0 \otimes \mathbb{C}, \ \mathfrak{k} = \mathfrak{k}_0 \otimes \mathbb{C} \ \mathrm{etc.}$

Problem: Find all irred. Harish-Chandra modules admitting positive-definite invariant Hermitian forms.

Q: Classify admissible (\mathfrak{g}, K) modules \supset Harish-Chandra modules

Zuckerman, 1978: algebraic construction for admissible (\mathfrak{g}, K) modules known as **cohomological induc**tion:

- $\mathfrak{g}\supset\mathfrak{q}=\mathfrak{l}\oplus\mathfrak{u}$ $\theta\text{-stable parabolic subalgebra}$
- $L = N_G(\mathfrak{q})$ Levi subgroup

Cohomological induction is a two-step process:

Fact: If V has an invariant Hermitian form, then so does $\mathcal{L}_s V$ where $s = \dim \mathfrak{u} \cap \mathfrak{k}$.

Want: Relate signatures of forms on
$$V$$
, $\mathcal{L}_s V$.

Theorem 1.1. (Vogan, Unitarizability of certain series of representations, Annals of Math., 1984: Theorem 1.3)

If $V \in \mathcal{C}(\mathfrak{l},K)$ is unitary of infinitesimal character $\lambda - \rho(\mathfrak{u})$ and $\operatorname{Re}\langle \lambda,\alpha^{\vee}\rangle \leqslant 1$ for every $\alpha \in \Delta(\mathfrak{u},\mathfrak{h})$, then $\mathcal{L}_s V$ is unitary also.

Wallach, On the unitarizability of derived functor modules, Inventiones Math., 1984: Same result, less technical proof. Approach:

sig of
$$V \rightsquigarrow \text{sig}$$
 of intermediate module (the GVM) $\rightsquigarrow \text{sig}$ for $\mathcal{L}_s V$

Extensions of Wallach's first computation:

- Y, 2004: sig for irreducible Verma modules (any inf'l char a.e.)
- Y, 2006: irreducible highest weight modules (any regular inf'l char)

Setup:

- $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}$ θ -stable Borel
- $\lambda \in \mathfrak{h}^* \leadsto M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda \rho} \text{ (inf'l char } \lambda)$
- to have invariant Hermitian form on $M(\lambda)$ need: \mathfrak{h} maximally compact, $\theta \Delta^+ = \Delta^+$, and λ imaginary (recall \mathfrak{b} θ -stable)
- Invariant form on $M(\lambda)$ unique up to real scalar. Canonical form (i.e. $\langle v_{\lambda-\rho}, v_{\lambda-\rho} \rangle_{\lambda} = 1$) called the Shapovalov form.
- Invariance $\rightsquigarrow \langle \cdot, \cdot \rangle_{\lambda}$ pairs $\lambda \mu \rho$, $\lambda + \bar{\mu} \rho$ wt spaces finite-dimensional \sim Can discuss signatures by restricting attention to $M(\lambda)_{\lambda-\mu-\rho}$ if μ imaginary, $M(\lambda)_{\lambda-\mu-\rho} \oplus M(\lambda)_{\lambda-+\bar{\mu}-\rho}$ if μ non-imaginary

Signature: encode in signature character:

On
$$M(\lambda)_{\lambda-\mu-\rho}$$
 where μ imaginary: let signature of matrix representing $\langle \cdot, \cdot \rangle_{\lambda}$ w.r.t. some basis be $(p(\mu), q(\mu))$. Define **signature character** to be:
$$\sum_{\mu \in \Lambda_r^+ \text{ imaginary}} (p(\mu) - q(\mu))e^{\lambda-\mu-\rho}$$

Why can we ignore non-imaginary μ ?

Lemma 1.2. (Vogan, Unitarizability of certain series of representations, Annals of Math., 1984, Sublemma 3.18)

1

Let E be a finite dimensional vector space carrying a non-degenerate invariant Hermitian form \langle , \rangle of signature (p,q). Let S be a totally isotropic subspace of E (that is, $\langle \cdot, \cdot \rangle|_S$ is zero), and set

$$S^{\perp} = \{ e \in E | \langle e, S \rangle = 0 \}.$$

- a) The radical of $\langle \cdot, \cdot \rangle|_{S^{\perp}}$ is S; so $\langle \cdot, \cdot \rangle$ induces a non-degenerate Hermitian form $\langle \cdot, \cdot \rangle_F$ on $F = S/S^{\perp}$. b) Write (p', q') for the signature of $\langle \cdot, \cdot \rangle_F$ and m for the dimension of S. Then

$$p = p' + m, \qquad q = q' + m.$$

If we apply this lemma to $M(\lambda)_{\lambda-\mu-\rho} \oplus M(\lambda)_{\lambda+\bar{\mu}-\rho}$ when μ is non-imaginary, observing that

$$\begin{array}{lll} \langle M(\lambda)_{\lambda-\mu-\rho}, M(\lambda)_{\lambda-\mu-\rho} \rangle_{\lambda} & = & 0 & \text{and} \\ \langle M(\lambda)_{\lambda+\bar{\mu}-\rho}, M(\lambda)_{\lambda+\bar{\mu}-\rho} \rangle_{\lambda} & = & 0 & \end{array}$$

we see that the number of positive and negative eigenvalues for a matrix representing $\langle \cdot, \cdot \rangle_{\lambda}$ on $M(\lambda)_{\lambda-\mu-\rho} \oplus$ $M(\lambda)_{\lambda+\bar{\mu}-\rho}$ are equal, so "p-q=0."

2. Signature Character Formulas That We Know

Irreducible Verma Modules:

Theorem 2.1. (Y, The signature of the Shapovalov form on irreducible Verma modules, Representation **Theory**, 2005: Theorems 4.6 and 6.12)

Let $\Delta_i^+(\mathfrak{g},\mathfrak{h})$ be the set of imaginary roots in $\Delta^+(\mathfrak{g},\mathfrak{h})$. Subscripts or superscripts i will refer to objects associated with $\Delta_i^+(\mathfrak{g},\mathfrak{h})$. We will assume that everything (simple roots, reducibility hyperplanes, etc.) in this theorem is associated to the root system of imaginary roots. Choose the fundamental alcove A_0^i of W_a^i and the fundamental chamber \mathfrak{C}_0^i of W_i to contain $-\rho_i$. Let $\overline{}:W_a^i\to W_i$ be the homomorphism arising from the semidirect product structure $W_a^i=W_i\ltimes\Lambda_i$. Given $a\in W_a^i$, let $\widetilde{a}\in W_i$ be such that $aA_0^i\in \widetilde{a}\mathfrak{C}_0^i$. Let $aA_0^i = C_0 \xrightarrow{r_1} C_1 \xrightarrow{r_2} \cdots \xrightarrow{r_\ell} C_\ell = \tilde{a}A_0^i$ be a path from aA_0^i to $\tilde{a}A_0^i$. Then for imaginary $\lambda \in aA_0^i$:

$$\begin{array}{lcl} ch_s M(\lambda)|_{\mathfrak{a}_0} & = & \lambda|_{\mathfrak{a}_0} & and \\ ch_s M(\lambda)|_{\mathfrak{t}_0} & = & R^{aA_0}(\lambda|\mathfrak{t}_0) \\ & = & \sum_{\substack{S=\{i_1<\dots< i_k\}\\ \subset \{1,\dots,\ell\}}} \varepsilon(S) 2^{|S|} \frac{e^{\overline{r_{i_1}r_{i_2}}\dots\overline{r_{i_k}}r_{i_k}r_{i_{k-1}}\dots r_{i_1}\lambda|_{\mathfrak{t}_0}-\rho}}{\prod_{\alpha\in\Delta^+(\mathfrak{p},\mathfrak{t})} (1-e^{-\alpha})\prod_{\alpha\in\Delta^+(\mathfrak{k},\mathfrak{t})} (1+e^{-\alpha})} \end{array}$$

where $\varepsilon(S) = \varepsilon(C_{i_1-1}, C_{i_1})\varepsilon(\overline{r_{i_1}}C_{i_2-1}, \overline{r_{i_1}}C_{i_2})\cdots\varepsilon(\overline{r_{i_1}}\cdots\overline{r_{i_{k-1}}}C_{i_k-1}, \overline{r_{i_1}}\cdots\overline{r_{i_{k-1}}}C_{i_k}), \ \varepsilon(\varnothing) = 1, \ and \ the formula for the constant of the$ mula for $\varepsilon(C, C')$ for alcoves C, C' may be found in Theorem 6.12.

Note: Wallach dealt with the case $\ell = 0$ for generalized Verma modules. See Lemma 2.3 of On the unitarizability of derived functor modules, Inventiones Math., 1984.

Irreducible Highest Weight Modules:

Theorem 2.2. (Y. Signatures of Invariant Hermitian Forms on Irreducible Highest Weight Modules, Duke Math. J., to appear, Theorem 3.2.3)

Let λ be antidominant and regular. Let imaginary $\delta \in \mathfrak{h}^*$ be regular and let $w(\delta) \in W_{\lambda}$ be such that $\delta \in w(\delta)\mathfrak{C}_0$. Then for $x \in W_{\lambda}$ such that $x\lambda$ is imaginary:

$$ch_s L(x\lambda) = \sum_{\substack{y_1 < \dots < y_j = x \\ \lambda \text{ in solin across}}} (-1)^{j-1} \left(\prod_{i=2}^j P_{w_\lambda y_i, w_\lambda y_{i-1}}^{\lambda, w(\delta)}(1) \right) \left(ch_s M(y_1 \lambda + \delta t) e^{-\delta t} \right)$$

for small t > 0. The $P_{a,b}^{\lambda,w}$'s are signed Kazhdan-Lusztig polynomials (defined later).

3. Computing signatures for (\mathfrak{g},K) -modules from signatures for the $(\mathfrak{g},L\cap K)$ -module to which the derived Bernstein functor is applied

Reference for this section:

Wallach, On the unitarizability of derived functor modules, Inventiones Math., 1984.

(K) Signature character of (\mathfrak{g}, K) -module:

For every K-type γ : $(p(\gamma), \quad q(\gamma))$ # of copies of γ for which form is pos def'n which form is neg def'n

$$\sum_{\gamma \in \hat{K}} (p(\gamma) - q(\gamma))e^{\gamma}$$

Let $V \in \mathcal{C}(\mathfrak{g}, L \cap K)$ have an invariant Hermitian form \leadsto invariant Hermitian form on $\Pi_*(V)$ naturally. In this pairing, $\Pi_{s-j}(V)$ is paired with $\Pi_{s+j}(V)$ where $s = \dim \mathfrak{u} \cap \mathfrak{k}$, from which we conclude

$$ch_s\Pi_*(V) = ch_s\Pi_s(V)$$

by Lemma 1.2. (Compare this with our previous application of this lemma to $M(\lambda)_{\lambda-\mu-\rho} \oplus M(\lambda)_{\lambda+\mu-\rho}$.) Let F_{γ} be a realization of γ and let Γ be the Zuckerman functor. Let $V \in \mathcal{C}(\mathfrak{g}, L \cap K)$ be irreducible. As K-rep:

$$\Pi_{s}(V) \simeq \Gamma^{s}(V) \simeq \bigoplus_{\gamma \in \hat{K}} \underbrace{\operatorname{Hom}_{\mathfrak{k},K}(F_{\gamma},\Gamma^{s}(V))}_{\cong \operatorname{Ext}_{\mathfrak{k},L\cap K}^{s}(F_{\gamma},V)} \otimes F_{\gamma}$$

$$\simeq \bigoplus_{\gamma \in \hat{K}} \underbrace{H^{s}(\mathfrak{k},L\cap K;\operatorname{Hom}_{\mathbb{C}}(F_{\gamma},V)_{L\cap K})}_{\operatorname{sig of Herm form here}} \otimes F_{\gamma}$$

$$\simeq p(\gamma) - q(\gamma)$$

Turns out that you can compute signature of form on $H^s(...)$ by looking at signature on $C^s(...)$ from chain complex:

In
$$C^s$$
: $(Z^s)^{\perp} = B^s$ and $(B^s)^{\perp} = Z^s$

$$\Rightarrow \boxed{\operatorname{sig} C^s(\ldots) = \operatorname{sig} Z^s/B^s = \operatorname{sig} H^s(\ldots)} \quad \text{by Lemma 1.2.}$$

Computing signature of $C^s(\operatorname{Hom}_{\mathbb{C}}(F_{\gamma},V)_{L\cap K})$:

$$\begin{split} C^s\left(\mathrm{Hom}_{\mathbb{C}}(F_{\gamma},V)_{L\cap K}\right) &= \mathrm{Hom}_{L\cap K}\left(\bigwedge^s(\mathfrak{k}/\mathfrak{l}\cap\mathfrak{k}),\mathrm{Hom}_{\mathbb{C}}(F_{\gamma},V)_{L\cap K}\right) \\ &= \mathrm{Hom}_{L\cap K}\left(\bigwedge^s(\mathfrak{k}/\mathfrak{l}\cap\mathfrak{k}),F_{\gamma}^*\otimes V\right) \\ &= \left(\bigwedge^s(\mathfrak{k}/\mathfrak{l}\cap\mathfrak{k})^*\otimes F_{\gamma}^*\otimes V\right)^{\mathfrak{l}\cap\mathfrak{k}} \end{split}$$

We wish to identify the trivial representations in $\bigwedge^s (\mathfrak{k}/\mathfrak{l} \cap \mathfrak{k})^* \otimes F_{\gamma}^* \otimes V$. Recall the Weyl character formula: if $\xi \in (\mathfrak{l} \cap \mathfrak{k})$ has highest weight μ , then

$$D_{\mathfrak{l} \cap \mathfrak{k}} \operatorname{ch} \xi = \sum_{s \in W_{\mathfrak{l} \cap \mathfrak{k}} \atop 3} e^{s(\mu + \rho_{\mathfrak{l} \cap \mathfrak{k}})}$$

where $D_{\mathfrak{l} \cap \mathfrak{k}} = e^{\rho_{\mathfrak{l} \cap \mathfrak{k}}} \prod_{\alpha \in \Delta^+(\mathfrak{l} \cap \mathfrak{k}, \mathfrak{t})} (1 - e^{-\alpha})$ is the Weyl denominator. Observe that by multiplying the character

of a representation by the Weyl denominator, we can identify the multiplicities of finite-dimensional representations of regular infinitesimal character by reading off the coefficient corresponding to the highest weight plus $\rho_{\mathfrak{l} \cap \mathfrak{k}}$ in the product. Therefore

$$\dim \operatorname{Hom}_{\mathfrak{l} \cap \mathfrak{k}} \left(\operatorname{triv}, \bigwedge^{s} (\mathfrak{k}/\mathfrak{l} \cap \mathfrak{k})^{*} \otimes F_{\gamma}^{*} \otimes V \right) = \text{coefficient of } e^{\rho_{\mathfrak{l} \cap \mathfrak{k}}} \text{ in } D_{\mathfrak{l} \cap \mathfrak{k}} \operatorname{ch} \left(\bigwedge^{s} (\mathfrak{k}/\mathfrak{l} \cap \mathfrak{k})^{*} \otimes F_{\gamma}^{*} \otimes V \right)$$

and similarly for signature characters. Therefore

$$ch_s\Pi_s V = \sum_{\gamma \in K^{\hat{}}} (p(\gamma) - q(\gamma))e^{\gamma}$$

where

where
$$p(\gamma) - q(\gamma) = \operatorname{sig} H^{s}(\dots) = \operatorname{sig} C^{s}(\operatorname{Hom}_{\mathbb{C}}(F_{\gamma}, V)_{L \cap K})$$

$$= \operatorname{sig} \left(\bigwedge^{s}(\mathfrak{k}/\mathfrak{l} \cap \mathfrak{k})^{*} \otimes F_{\gamma}^{*} \otimes V \right)^{\mathbb{I} \cap \mathfrak{k}}$$

$$= \operatorname{coefficient} \operatorname{of} e^{\rho_{\mathfrak{l} \cap \mathfrak{k}}} \operatorname{in} D_{\mathfrak{l} \cap \mathfrak{k}} \operatorname{ch}_{s} \left(\bigwedge^{s}(\mathfrak{k}/\mathfrak{l} \cap \mathfrak{k})^{*} \otimes F_{\gamma}^{*} \otimes V \right)$$

$$= \operatorname{coefficient} \operatorname{of} e^{\rho_{\mathfrak{l} \cap \mathfrak{k}}} \operatorname{in} D_{\mathfrak{l} \cap \mathfrak{k}} \operatorname{ch}_{s} \bigwedge^{s}(\mathfrak{k}/\mathfrak{l} \cap \mathfrak{k})^{*} \operatorname{ch} F_{\gamma}^{*} \operatorname{ch}_{s} V$$

$$= \operatorname{coefficient} \operatorname{of} e^{0} \operatorname{in} \prod_{\alpha \in \Delta^{+}(\mathfrak{l} \cap \mathfrak{k}, \mathfrak{k})} (1 - e^{-\alpha}) \prod_{\alpha \in \Delta(\mathfrak{u} \cap \mathfrak{k}, \mathfrak{k})} (-1)^{s} (1 - e^{\alpha}) (1 + e^{-\alpha}) \operatorname{ch} F_{\gamma}^{*} \operatorname{ch}_{s} V.$$

(See Lemma 1.1 of Wallach's paper for the computation of $ch_s \bigwedge^s (\mathfrak{k}/\mathfrak{l} \cap \mathfrak{k})^*$.)

4. REDUCIBLE VERMA MODULES AND SIGNED KAZHDAN-LUSZTIG POLYNOMIALS

$$M(\lambda) \supset J(\lambda)$$
 (=radical) $\leadsto M(\lambda)/J(\lambda) =: L(\lambda)$ irreducible highest weight module deg form $\langle \cdot, \cdot \rangle_{\lambda}$ on $M(\lambda) \xrightarrow{\smile}$ non-deg form $\langle \cdot, \cdot \rangle_{\lambda}$ on $L(\lambda) \leftarrow$ Compute this sig

sigs differ only by zero eigenvalues

Structure of $M(\lambda)$ in terms of $L(\lambda)$'s:

For $\lambda \in \mathfrak{h}^*$ antidominant integral, $x, y \in W$:

Composition factor multiplicity:
$$[M(x\lambda):L(y\lambda)] = P_{w_0x,w_0y}(1).$$
 Character formula:
$$ch\,M(x\lambda) = \sum_{y\in W} P_{w_0x,w_0y}(1)\,ch\,L(y\lambda)$$
 Inversion formula:
$$ch\,L(x\lambda) = \sum_{y\in W} (-1)^{\ell(x)-\ell(y)} P_{y,x}(1)\,ch\,M(y\lambda)$$

If λ is not integral, replace W and its longest element w_0 with the integral Weyl group W_{λ} and its longest element w_{λ} in the formulas.

Additional information encoded in Kazhdan-Lusztig polynomials: structure of j^{th} level of Jantzen filtration:

(4.1)
$$[M(x\lambda)_j : L(y\lambda)] = \text{coeff of } q^{\frac{\ell(x)-\ell(y)-j}{2}} \text{ in } P_{w_\lambda x, w_\lambda y}(q)$$

The Jantzen filtration:

- $\lambda_t := \lambda_0 + \delta t$ where $\lambda_0 \in H_{\alpha,n}$ and $\delta \in \mathfrak{h}^*$ regular, imaginary
- det $\langle \cdot, \cdot \rangle_{\lambda_t} \neq 0$ for small $t \neq 0$, det $\langle \cdot, \cdot \rangle_{\lambda_0} = 0$

Jantzen filtration:
$$M = M(\lambda_0) = M^0 \supset M^1 \supset \cdots \supset M^N = \{0\}$$

$$v \in M^j \iff \exists f_v : (-\varepsilon, \varepsilon) \to M \text{ with}$$

- $f_v(0) = v$ and
- $\langle f_v(t), v' \rangle_{\lambda_t}$ vanishes at least to order j at t=0
- \rightsquigarrow **non-degenerate** invariant Hermitian form $\lim_{t\to 0^+} \frac{1}{t^j} \langle \cdot, \cdot \rangle_{\lambda_t}$ on $M_j := M^j/M^{j+1}$ $(p_j, q_j) :=$ signature of this form on M_j then:

Proposition 4.1. (Voqan, Unitarizability of certain series of representations, Annals of Math., 1984: Proposition 3.3)

$$t > 0: \quad sig \ \langle \cdot, \cdot \rangle_{\lambda_t} = \left(\sum_{j=0}^N p_j, \sum_{j=0}^N q_j \right)$$

$$t < 0: \quad sig \ \langle \cdot, \cdot \rangle_{\lambda_t} = \left(\sum_{j \text{even}}^N p_j + \sum_{j \text{odd}}^N q_j, \sum_{j \text{even}}^N q_j + \sum_{j \text{odd}}^N p_j \right)$$

- $M(x\lambda)_i$ is semisimple: direct sum of $L(y\lambda)$'s with multiplicities given by (4.1)
- Proposition 4.1: $ch_s M(x\lambda + \delta t) = \text{sum of sig chars of } L(y\lambda)$'s
- need to keep track of this sum

Introduce signed Kazhdan-Lusztig polynomial $P_{w_{\lambda}x,w_{\lambda}y}^{\lambda,\delta}$

Each
$$L(y\lambda)$$
 in $M(x\lambda)_j \rightsquigarrow {+1 \atop +1, -1, \ 0}$ to coeff of $q^{\frac{\ell(x)-\ell(y)-j}{2}}$ in $P_{\substack{w_\lambda x, w_\lambda y \\ w_\lambda x, w_\lambda y}}$

- +1: sig is that of Shapovalov form on $L(y\lambda)$
- -1: sig is "opposite" that of Shapovalov form on $L(y\lambda)$ (Recall inv Herm form on h.w.m. ! up to \mathbb{R})
- 0: $L(y\lambda)$ paired with $L(-\overline{y\lambda})$ (which is possibly another copy of $L(y\lambda)$)

Proposition 4.1
$$\rightsquigarrow ch_s \langle \cdot, \cdot \rangle_j = \sum_{y \in W_{\lambda}} \text{coeff of } q^{\frac{\ell(x) - \ell(y) - j}{2}} \text{ in } P_{w_{\lambda}x, w_{\lambda}y}^{\lambda, \delta} \times ch_s L(y\lambda)$$

$$\rightsquigarrow ch_s \langle \cdot, \cdot \rangle_{x\lambda + \delta t} e^{-\delta t} = \sum_{y \in W_{\lambda}} P_{w_{\lambda}x, w_{\lambda}y}^{\lambda, \delta}(1) ch_s L(y\lambda) \quad \text{for } t > 0$$

$$\rightsquigarrow ch_s L(x\lambda) = \sum_{\substack{y_1 < \dots < y_j = x \\ y_k \lambda^{\circ} \text{s imaginary}}} (-1)^{j-1} \left(\prod_{i=2}^{j} P_{w_{\lambda}y_i, w_{\lambda}y_{i-1}}^{\lambda, \delta}(1) \right) \left(ch_s \langle \cdot, \cdot \rangle_{y_1\lambda + \delta t} e^{-\delta t} \right)$$

Want: Algorithm for computing $P_{x,y}^{\lambda,\delta}$.

The usual Kazhdan-Lusztig polynomials may be computed via $P_{x,x} = 1$, $P_{x,y} = 0$ when x > y, and by the recursive formulas:

- a) $P_{w_{\lambda}x,w_{\lambda}y} = P_{w_{\lambda}xs,w_{\lambda}y}$ if ys > y and $x,xs \ge y$, s simple.
- a') $P_{w_{\lambda}x,w_{\lambda}y} = P_{w_{\lambda}sx,w_{\lambda}y}$ if sy > y and $x,sx \ge y$, s simple.
- b) If y > ys then

$$q^{c}P_{w_{\lambda}xs,w_{\lambda}y} + q^{1-c}P_{w_{\lambda}x,w_{\lambda}y} = \sum_{z \in W_{\lambda}|zs>z} \frac{\mu(w_{\lambda}z,w_{\lambda}y)q^{\frac{\ell(z)-\ell(y)+1}{2}}P_{w_{\lambda}x,w_{\lambda}z}}{+P_{w_{\lambda}x,w_{\lambda}ys}}$$

where c = 1 if xs < x, c = 0 if xs > x, and $\mu(w_{\lambda}z, w_{\lambda}y)$ is the multiplicity of $L(y\lambda)$ in $M(z\lambda)_1$.

Theorem 4.2. (Y, "Signatures of invariant Hermitian forms on irreducible highest weight modules", **Duke Math.** J., to appear: Theorem 4.6.10) Letting $s = s_{\alpha}$ be a simple reflection, the signed Kazhdan-Lusztig polynomials are defined by the intial conditions $P_{x,x}^{\lambda,w} = 1$, $P_{x,y}^{\lambda,w} = 0$ for x > y and the recursive formulas:

- a) $P_{w_{\lambda}x,w_{\lambda}y}^{\lambda,w} = sgn(-w\rho,x\alpha)\varepsilon(H_{x\alpha,-(\lambda,\alpha^{\vee})},xs)P_{w_{\lambda}xs,w_{\lambda}y}^{\lambda,w} \text{ if } ys > y \text{ and } xs > x \geqslant y$ a') $P_{w_{\lambda}x,w_{\lambda}y}^{\lambda,w} = sgn(-w\rho,\alpha)\varepsilon(H_{\alpha,(sx\lambda,\alpha^{\vee})},sx)P_{w_{\lambda}sx,w_{\lambda}y}^{\lambda,w} \text{ if } sy > y \text{ and } sx > x \geqslant y$ b) If $x,y \in W_{\lambda}$ are such that x < xs and y > ys and x > y then:

$$-(-1)^{\varepsilon((\lambda,\alpha^{\vee})x\alpha)}P_{w_{\lambda}xs,w_{\lambda}y}^{\lambda,w}(q) + \operatorname{sgn}(\delta,x\alpha^{\vee})qP_{w_{\lambda}x,w_{\lambda}y}^{\lambda,w}(q)$$

$$= \sum_{z \in W_{\lambda}|z < zs} \operatorname{sgn}(\delta,z\alpha^{\vee})a_{y,1}^{z\lambda,w}q^{\frac{\ell(z)-\ell(y)+1}{2}}P_{w_{\lambda}x,w_{\lambda}z}^{\lambda,w}(q) + \operatorname{sgn}(\delta,ys\alpha^{\vee})P_{w_{\lambda}x,w_{\lambda}ys}^{\lambda,w}(q).$$

The values of $\varepsilon(H_{\alpha,n},w)$ are computed in "The signature of the Shapovalov Form on Irreducible Verma Modules", Representation Theory, 2004: Theorem 5.3.4 and Theorem 6.12.

Notation:

- $A(\lambda, w)$ where $\lambda \in \mathfrak{h}^*$ and $w \in W_{\lambda}$ is the alcove containing $\lambda + \delta t$ for $\delta \in w\mathcal{C}_0$ and small t > 0- $\delta_{\alpha} = \left\{ \begin{array}{cc} 1 & \text{if } \alpha \text{ is compact} \\ -1 & \text{if } \alpha \text{ is non-compact} \end{array} \right.$
- For an alcove A and $\lambda \in \mathfrak{h}^*$, $R^A(\lambda) = ch_s M(\lambda)$ if $\lambda \in A$ is imaginary

Example 1: $\mathfrak{g}_0 = \mathfrak{su}(2)$. We have $\mathfrak{h} = \mathfrak{t}$. Let $\Delta^+(\mathfrak{g}, \mathfrak{h}) = \{\alpha_1\}$ and let λ_1 be the corresponding fundamental

Irreducible Verma modules: Choose $\lambda \in \mathfrak{h}^*$ so that $(\lambda, \alpha_1^{\vee}) \in (n, n+1)$ where $n \in \mathbb{Z}_{\geq 0}$. Then $\lambda \in$ $A(n\lambda_1, w_0)$. The reducibility hyperplanes separating the alcove aA_0 containing λ and $\tilde{a}A_0$ are $H_{\alpha_1,1}, H_{\alpha_1,2}$, ..., $H_{\alpha_1,n}$. In the setup of Theorem 2.1 we choose the path so that $r_1 = s_{\alpha_1,n}, r_2 = s_{\alpha_1,n-1}, \ldots, r_n = s_{\alpha_1,1}$. Suppose $S \subset \{1, 2, ..., n\}$ and $|S| \ge 2$. Then $\overline{r_{i_1}}C_{i_2-1}$ and $\overline{r_{i_1}}C_{i_2}$ lie in the Wallach region, and thus $\varepsilon(\overline{r_{i_1}}C_{i_2-1}, \overline{r_{i_1}}C_{i_2}) = 0$. Therefore $\varepsilon(S) = 0$ for $|S| \ge 2$. For our choice of path, note that $C_i \supset (n-i, n-i+1)$, whence $\varepsilon(\{i\}) = \varepsilon(C_{i-1}, C_i) = \varepsilon(H_{\alpha_1, n-i+1}, s_1) = \delta_{\alpha_1}^{n-i+1} = 1$ (see Lemma 5.2.17 or Theorem 6.12 of Y 2004). Substituting these values into Theorem 2.1:

$$R^{A(n\lambda_1,w_0)} = ch_s M(\lambda) = \frac{\sum_{i=1}^n 2e^{\overline{r_i}r_i\lambda-\rho} + e^{\lambda-\rho}}{\prod_{\alpha \in \Delta^+(\mathfrak{p},\mathfrak{t})} (1 - e^{-\alpha}) \prod_{\alpha \in \Delta^+(\mathfrak{k},\mathfrak{t})} (1 - e^{-\alpha})}$$

$$= \frac{\sum_{i=1}^n 2e^{\lambda-i\alpha_1-\rho} + e^{\lambda-\rho}}{1 + e^{-\alpha_1}}$$

$$= \frac{\sum_{i=1}^n e^{\lambda-(i-1)\alpha_1-\rho} + e^{\lambda-i\alpha_1-\rho}}{1 + e^{-\alpha_1}}$$

$$= e^{\lambda-\rho} + e^{\lambda-\rho-\alpha_1-\rho} + \dots + e^{\lambda-(n-1)\alpha_1-\rho} + \frac{e^{\lambda-n\alpha_1-\rho}}{1 + e^{-\alpha_1}}.$$

Irreducible highest weight modules: Let $\lambda = -n\lambda_1$ for some $n \in \mathbb{Z}^+$. Since λ is in the Wallach region, taking n = 0 in the above formula:

$$ch_sL(\lambda) = ch_sM(\lambda) = \frac{e^{\lambda-\rho}}{1+e^{-\alpha}}.$$

According to Theorem 4.2,

$$1 = P_{w_0, w_0}^{\lambda, w_0} = \operatorname{sgn}(-w_0 \rho, \alpha_1) \varepsilon(H_{\alpha_1, n}, s_1) P_{w_0 s_1, w_0}^{\lambda, w} = \delta_{\alpha_1}^n P_{w_0 s_1, w_0}^{\lambda, w} = P_{w_0 s_1, w_0}^{\lambda, w_0}$$

by Lemma 5.2.17 or Theorem 6.12 of Y 2004. Substituting the values we have computed into Theorem 2.2:

$$ch_{s}L(s_{1}\lambda) = R^{A(s_{1}\lambda,w_{0})}(s_{1}\lambda) - P^{\lambda,w}_{w_{0}s_{1},w_{0}}R^{A(\lambda,w_{0})}(\lambda)$$

$$= R^{A(n\lambda_{1},w_{0})}(s_{1}\lambda) - R^{A(-n\lambda_{1},w_{0})}(s_{1}\lambda - n\alpha_{1})$$

$$= R^{A(n\lambda_{1},w_{0})}(s_{1}\lambda) - R^{A(0\lambda_{1},w_{0})}(s_{1}\lambda - n\alpha_{1})$$

$$= \left(e^{s_{1}\lambda - \rho} + \dots + e^{s_{1}\lambda - (n-1)\alpha_{1} - \rho} + \frac{e^{s_{1}\lambda - n\alpha_{1} - \rho}}{1 + e^{-\alpha_{1}}}\right) - \left(\frac{e^{s_{1}\lambda - n\alpha_{1} - \rho}}{1 + e^{-\alpha_{1}}}\right)$$

$$= e^{s_{1}\lambda - \rho} + e^{s_{1}\lambda - \alpha_{1} - \rho} + \dots + e^{s_{1}\lambda - (n-1)\alpha_{1} - \rho}.$$

Example 2: $\mathfrak{g}_0 = \mathfrak{sl}(2,\mathbb{R})$. We may proceed as in the previous example, but substitute $\delta_{\alpha_1} = -1$ instead of $\delta_{\alpha_1} = 1$.

FIGURE 1. $\mathfrak{su}(2)$

Irreducible Verma modules: For $\lambda \in \mathfrak{h}^*$ such that $(\lambda, \alpha_1^{\vee}) \in (n, n+1)$ where $n \in \mathbb{Z}_{\geq 0}$:

$$\begin{split} ch_s M(\lambda) &= R^{A(n\lambda_1,w_0)}(\lambda) = \frac{\sum_{i=1}^n (-1)^{n-i+1} 2e^{\overline{r_i}r_i\lambda - \rho} + e^{\lambda - \rho}}{\displaystyle\prod_{\alpha \in \Delta^+(\mathfrak{p},\mathfrak{t})} (1 - e^{-\alpha}) \displaystyle\prod_{\alpha \in \Delta^+(\mathfrak{k},\mathfrak{t})} (1 + e^{-\alpha})} \\ &= \frac{\sum_{i=1}^n (-1)^i 2e^{\lambda - i\alpha_1 - \rho} + e^{\lambda - \rho}}{1 - e^{-\alpha_1}} \\ &= e^{\lambda - \rho} - e^{\lambda - \rho - \alpha_1 - \rho} + \dots + (-1)^{n-1} e^{\lambda - (n-1)\alpha_1 - \rho} + (-1)^n \frac{e^{\lambda - n\alpha_1 - \rho}}{1 - e^{-\alpha_1}}. \end{split}$$

Irreducible highest weight modules: For $\lambda = -n\lambda_1$ where $n \in \mathbb{Z}^+$:

$$ch_s L(\lambda) = ch_s M(\lambda) = \frac{e^{\lambda - \rho}}{1 - e^{-\alpha_1}}.$$

Since $P_{w_0 s_1, s_0}^{\lambda, w_0} = (-1)^n$, we have

$$ch_{s}L(s_{1}\lambda) = R^{A(s_{1}\lambda,w_{0})}(s_{1}\lambda) - P^{\lambda,w_{0}}_{w_{0}s_{1},w_{0}}R^{A(\lambda,w_{0})}(\lambda)$$

$$= \left(\sum_{i=0}^{n-1} (-1)^{i}e^{s_{1}\lambda - i\alpha_{1} - \rho} + (-1)^{n}\frac{e^{s_{1}\lambda - n\alpha_{1} - \rho}}{1 - e^{-\alpha_{1}}}\right) - (-1)^{n}\left(\frac{e^{s_{1}\lambda - n\alpha_{1} - \rho}}{1 - e^{-\alpha_{1}}}\right)$$

$$= e^{s_{1}\lambda - \rho} - e^{s_{1}\lambda - \alpha_{1} - \rho} + \dots + (-1)^{n-1}e^{s_{1}\lambda - (n-1)\alpha_{1} - \rho}.$$

FIGURE 2. $\mathfrak{sl}(2)$