1. SIGNATURES AND COHOMOLOGICAL INDUCTION

Setting: G real red. Lie gp © K maximal cpt ~» 6 Cartan involution

| |
o 40
g=9g0®C, t =t QC etc.
Problem: Find all irred. Harish-Chandra modules admitting positive-definite invariant Hermitian forms.
Q: Classify admissible (g, K') modules D Harish-Chandra modules
Zuckerman, 1978: algebraic construction for admissible (g, K') modules known as cohomological induc-
tion:
- g D g = [@u f-stable parabolic subalgebra
- L = Ng(q) Levi subgroup
Cohomological induction is a two-step process:

jth cohomological induction functor £

Cl, L~ K) Clg, K)
O, ¢(g,LnK) @

Induction jth Bernstein functor

YV —  Ug)®u(q) V — I;(U(g) ®u(q) V)
u G triv. generalized
~C(q,L n K) Verma module

Fact: If V has an invariant Hermitian form, then so does £,V where s = dimu n €.

’ Want: Relate signatures of forms on V', L,V ‘

Theorem 1.1. (Vogan, Unitarizability of certain series of representations, Annals of Math., 1984: The-
orem 1.3)

If V e C(I, K) is unitary of infinitesimal character A — p(u) and Re (A\,a¥) < 1 for every a € A(u,h), then
LV is unitary also.

Wallach, On the unitarizability of derived functor modules, Inventiones Math., 1984:
Same result, less technical proof. Approach:

sig of V' ~» sig of intermediate module (the GVM) ~ sig for £,V
Extensions of Wallach’s first computation:

Y, 2004: sig for irreducible Verma modules (any inf’l char a.e.)
Y, 2006: irreducible highest weight modules (any regular inf’l char)
Setup:
- b =bh®n H-stable Borel
- Aeb* ~ M(X\) =U(g) ®u() Ca—p (inf’l char A)
to have invariant Hermitian form on M () need: h maximally compact, #A*T = At and X imaginary
(recall b f-stable)
- Invariant form on M ()) unique up to real scalar. Canonical form (i.e. (ux—,,vr—p), = 1) called the
Shapovalov form.
- Invariance ~~ (:,-), pairs A — u — p, A+ i — p wt spaces
finite-dimensional ~» Can discuss signatures by restricting attention to M (A)x—,—, if ¢ imaginary,
M) a—p—p ® M(A)a—45—, if p non-imaginary

Signature: encode in signature character:
On M (A)r—,—p where p imaginary: let signature of matrix representing (-, ), w.r.t. some basis be (p(u), g(1))-

Define signature character to be: Z (p(p) — q(p))er ==+

MEA;!' imaginary

Why can we ignore non-imaginary u?

Lemma 1.2. (Vogan, Unitarizability of certain series of representations, Annals of Math., 198/, Sub-

lemma 3.18)
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Let E be a finite dimensional vector space carrying a non-degenerate invariant Hermitian form (,) of signa-
ture (p,q). Let S be a totally isotropic subspace of E (that is, (-,-) |s is zero), and set

L ={ee E|(e,S) =0}.

a) The radical of (-,-)|sv is S; so (-,-) induces a non-degenerate Hermitian form (-,-). on F = S/S*+.
b) Write (p',q") for the signature of (-,-)p and m for the dimension of S. Then

p=p'+m, q=q¢ +m.
If we apply this lemma to M (A)x—p—p ® M () r4+7—p when p is non-imaginary, observing that

(MMr—p=ps M(M)r—p—p)y = 0 and
(M (M) atz—ps M()\)/\Jrﬂfp))\ =

we see that the number of positive and negative eigenvalues for a matrix representing (-,-), on M(A)x_,—,@®
M(X)x+—p are equal, so “p—q =10.”

2. SIGNATURE CHARACTER FORMULAS THAT WE KNOwW

Irreducible Verma Modules:

Theorem 2.1. (Y, The signature of the Shapovalov form on irreducible Verma modules, Representation
Theory, 2005: Theorems 4.6 and 6.12)

Let Af(g,h) be the set of imaginary roots in A*(g,h). Subscripts or superscripts i will refer to objects
associated with Af(g,h). We will assume that everything (simple roots, reducibility hyperplanes, etc.) in
this theorem is associated to the root system of imaginary roots. Choose the fundamental alcove A} of Wi
and the fundamental chamber €& of W; to contain —p;. Let~: Wi — W; be the homomorphism arising from
the semidirect product structure Wi = W; x A;. Given a € W}, let @ € W; be such that aAl € a€}. Let
aAl =Co > CL 3550y =aA} be a path from aAl to GAY. Then for imaginary X € aAl:

che M(MN)]ay = Aao and
chs M(N\)]¢, R0 (\to)
S e(9)2 ¢

et T Hoear o =) Taear o +e7)
c{1,....4}

Ty Tig  Tig Tig Tig_q iy Mg —p

where e(S) = e(Cy, 1,C4,)e(,Ciy—1,75;Ciy) - €(Tiy + Tin_1Cir—1,Tiy " *Tins Cir. ), (&) = 1, and the for-
mula for e(C,C") for alcoves C, C' may be found in Theorem 6.12.

Note: Wallach dealt with the case £ = 0 for generalized Verma modules. See Lemma 2.3 of On the
unitarizability of derived functor modules, Inventiones Math., 1984.

Irreducible Highest Weight Modules:

Theorem 2.2. (Y, Signatures of Invariant Hermitian Forms on Irreducible Highest Weight Modules, Duke
Math. J., to appear, Theorem 3.2.3)

Let X\ be antidominant and reqular. Let imaginary § € b* be reqular and let w(d) € W, be such that 6 € w(d)€.
Then for x € Wy such that x is imaginary:

chyL(z\) = D (H Pyl )> (chs M (y1 )\ + 6t)e ")

y1<--<yj=x
Yr\’s imaginary

for smallt > 0. The P;"bw ’s are signed Kazhdan-Lusztig polynomials (defined later).
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3. COMPUTING SIGNATURES FOR (g, K)-MODULES FROM SIGNATURES FOR THE (g, L n K)-MODULE TO
WHICH THE DERIVED BERNSTEIN FUNCTOR IS APPLIED

Reference for this section:
Wallach, On the unitarizability of derived functor modules, Inventiones Math., 1984.
(K) Signature character of (g, K)-module:

For every K-type 7 : (r(7), a(v))
# of copies of v for # of copies of ~y for
which form is pos def’n  which form is neg def'n

() = a()e”

~ekK

Let V € C(g, L n K) have an invariant Hermitian form ~~ invariant Hermitian form on I, (V") naturally.
In this pairing, IT,_; (V') is paired with II,1;(V) where s = dimu n £, from which we conclude

chsIl (V) = ch II4(V)

by Lemma 1.2. (Compare this with our previous application of this lemma to M(X)x—,—p @ M(A)xtp—p-)
Let F, be a realization of y and let I' be the Zuckerman functor. Let V € C(g, L n K) be irreducible. As
K-rep:
trivial K-action
——
(V)| ~ T(V)~ & Homeg(F,,I%(V)) QF,
~eK [ —
=~ Exty o (Fy, V)

~ @ H(tLnK;Home(F,,V)pak) ®F,

vek ~

sig of Herrg form here
~p(7) —a(v)

Turns out that you can compute signature of form on H*(...) by looking at signature on C*(...) from
chain complex:

In C*: (z5)+ = B* and (Bt =2z

= | sigC®(...) =sig Z°/B° =sig H*(...) | by Lemma 1.2

Computing signature of C*(Homc(F,,V)r~k):

C* (Home(Fy, V)pnk) = Homp.g (/\(E/[m?),Homc(Fw,V)LmK>

Homy ~x (/S\(E/[ nE),F*® V)

s e
(/\(E/[ N)*®FF® V)

We wish to identify the trivial representations in A°(¢/ln €)* ® F* ® V. Recall the Weyl character formula:
if £ € (I n &) has highest weight u, then

Di~eché = Z eSthtpine)
SEWine
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where Dy~¢ = ePint H (1 —e™®) is the Weyl denominator. Observe that by multiplying the character
aeAt(InEt)

of a representation by the Weyl denominator, we can identify the multiplicities of finite-dimensional repre-

sentations of regular infinitesimal character by reading off the coefficient corresponding to the highest weight

plus pi~¢ in the product. Therefore

S

dim Homy~¢ (triv, /\(E/[ NEH*RFF® V) = coefficient of e’'~* in Dy~¢ ch (/\(E/[ NE*QFF® V>

and similarly for signature characters. Therefore

chsIl,V = Z (p(’Y) - Q(’V))eﬂy

~eK"
where
p(v) —qly) = sigH*(...) =SigCS(H0m<c(F[%EV)LmK)

= sig (N°F/ln)*QFF®V)

coefficient of e”*~t in Di~¢ chs (/\S(E/[ NE*RFF® V)

coefficient of e”t in Di~¢ chs \°(8/Ln €)% ch F¥ ch, V

coefficient of €? in H (1—e™) H (=1 —e*) (1 +e"*)ch FJ ch, V.
aeAt(InE,t) aeA(unt,t)

(See Lemma 1.1 of Wallach’s paper for the computation of ch, A®(£/l N €)*.)

4. REDUCIBLE VERMA MODULES AND SIGNED KAZHDAN-LUSZTIG POLYNOMIALS

M(X) o J(A) (=radical) ~ M(X)/J(N\) =: L(X) irreducible highest weight module
deg form (-,-), on M(X) ~» non-deg form (-,-), on L(\) « Compute this sig

J

sigs differ only by zero eigenvalues
Structure of M (A) in terms of L(\)’s:
For X € h* antidominant integral, z,y € W:

Composition factor multiplicity: [M(zA) : L(yA)] = Puyzwoy (L)
Character formula: ch M(zA) = > Pugray(1) ch L(yN)
yeW
Inversion formula: ch L(z)) = Z (=1)!@=tW P, (1) ch M(y\)
yeW

If X is not integral, replace W and its longest element wg with the integral Weyl group W, and its longest
element w) in the formulas.
Additional information encoded in Kazhdan-Lusztig polynomials: structure of j*™ level of
Jantzen filtration:
Ua)=t)=i

(4.1) [M(zX); : L(yA)] = coeff of ¢ in Py, zwyy(q)
The Jantzen filtration:
- At := Ag + 6t where A\g € Hy ,, and 0 € b* regular, imaginary
- det (-,-),, # 0 for small t # 0, det (-,), =0
Jantzen filtration: M = M(\) = M° > M' > --- o MY = {0}
veMI > 3If,:(—e,e) > M with
- f»(0) = v and

- (fu(t),v"),, vanishes at least to order j at t = 0

1 . .
~» non-degenerate invariant Hermitian form lim+ — (), on Mj := M7 /MIH
t—0 ’
(pj,q;) := signature of this form on M; then:



Proposition 4.1. (Vogan, Unitarizability of certain series of representations, Annals of Math., 1984:
Proposition 3.3)

N
t>0: sig( (Z Djs Z qj>
—0 j=0

N N N
t<0: sig( (ZP ZQjaZQj"‘ij)
jodd

jeven jeven jodd

- M(z)); is semisimple: direct sum of L(yA)’s with multiplicities given by (4.1)
- Proposition 4.1: chs M (xX + §t) = sum of sig chars of L(yA)’s
- need to keep track of this sum

Introduce signed Kazhdan-Lusztig polynomial P

WAT,WAY "
e —t)—i , P,
% in w,\a: wAY

P )

. 1
Each L(yA) in M(z\); ~» iL 1,0 to coeff of ¢ o
+1: sig is that of Shapovalov form on L(y\)
—1: sig is “opposite” that of Shapovalov form on L(y\) (Recall inv Herm form on h.w.m. ! up to R)

0: L(yA) paired with L(—y\) (which is possibly another copy of L(y\))

Proposition 4.1 ~ chy (-,-); = Z coeff of q% P{E;SI wyy X ChsL(YyA)
yeWx
= s (o Yargar € = D Palany (DehsLyh) - for t>0
yeW

s ChSL(I)\) = Z (—1)j <H ij‘jyl WAy 1(1)) (chs <.7 '>y1/\+5t e*ét)

Y1 <<y;=z =2
YrA\’s imaginary

Want: Algorithm for computing P,j,vj .

The usual Kazhdan-Lusztig polynomials may be computed via P, , = 1, P, , = 0 when x > y, and by
the recursive formulas:
a) Pu,zwry = Puoyzs,way if ys >y and x,zs > y, s simple.
a") Pu,zwyy = Puwysz,wyy if sy >y and z, sz >y, s simple.
b) If y > ys then

L(z)—L(y)+1
. . D mwazway)g 2 Pugews-
q Pw,\zs,w/\y +q Pw,\a:,w/\y = zeWjy|zs>z

+Pw>\;c,'wxys
where c = 1if xs <z, ¢ =0if s > z, and p(wyz,wyy) is the multiplicity of L(yA) in M(2));.

Theorem 4.2. (Y, “Signatures of invariant Hermitian forms on irreducible highest weight modules”, Duke
Math. J., to appear: Theorem 4.6.10) Letting s = 5(, be a simple reflection, the signed Kazhdan-Lusztig

polynomials are defined by the intial conditions P/\’w = P:i‘;” =0 for x >y and the recursive formulas:
a) Py oy = sgn(—wp,xa)e(Hya, —(xav ) ©8) Pyl yy fys >y and xs >z >y

) Phw = sgn(—wp, @)e(Hy, (sur,av ) 5T) P ifsy>yandsr >z >y

WAL, WNY WAST, WY
b) If x,y € Wy are such that x < xs and y > ys and x >y then:
— (-1 )E(O\ a )xa)P$A1;S w;y( ) + sgn(d, za¥)q P$Au; wky(q)
A L=+

= Z Sgn((S? e )ay717 q 2 P’Lij\;i w;z( ) + Sgn((S’ ySO{ )P7ﬁ>\l‘l£ wWrYS (q)

zeWy|z<zs

The values of e(H,, ,,w) are computed in “The signature of the Shapovalov Form on Irreducible Verma
Modules”, Representation Theory, 2004: Theorem 5.3.4 and Theorem 6.12.
5



5. SOME EXAMPLES

Notation:

- A(M\,w) where A € h* and w € W), is the alcove containing A + dt for 6 € wCy and small ¢ > 0
1 if a is compact
- 0o = e
—1 if « is non-compact
- For an alcove A and A € h*, RA(\) = chyM()\) if A € A is imaginary

Example 1: go = su(2). We have h = t. Let At(g,h) = {a1} and let \; be the corresponding fundamental
weight.
Irreducible Verma modules: Choose A € h* so that (A\,«y) € (n,n + 1) where n € Zso. Then \ €
A(nAy,wp). The reducibility hyperplanes separating the alcove aAg containing A and @Ay are Hy, 1, Ha, 2,
.., Hay - In the setup of Theorem 2.1 we choose the path so that r1 = 54, n, "2 = Say.n—1, -+, ™n = Say,1-
Suppose S < {1,2,...,n} and |S| = 2. Then 7;;,C;, 1 and 7;,C;, lie in the Wallach region, and thus
e(7,Ciy—1,7,Ci,) = 0. Therefore e(S) = 0 for |S| = 2. For our choice of path, note that C; > (n—i,n—i+1),
whence e({i}) = e(Ci—1,C;) = e(Hay n—it+1,51) = 0, "1 =1 (see Lemma 5.2.17 or Theorem 6.12 of Y 2004).
Substituting these values into Theorem 2.1:

M 2eTATP 4 er P

[] a-e [ -e)

RA(nMﬂUO) = ChsM()‘) =

aeAt (p,t) aeAt ()
S 2er TP A
B 1+e >
Zn L ex\f(ifl)oqu + eA—ia1—p
— 1=
l1+e >
A— _
= PPy A & S
l1+e >
Irreducible highest weight modules: Let A = —n); for some n € ZT. Since A is in the Wallach region,
taking n = 0 in the above formula:
erp
chsL(\) = chsM(\) = pp—
According to Theorem 4.2,
A, _ A, - A, - pM
1= ngl,uz?zo = Sgn(_w0p7a1)€(H0¢17n7 sl)Pwo’Lgl,wo = 521Pw01:1,w0 - Pwoqgf,wo

by Lemma 5.2.17 or Theorem 6.12 of Y 2004. Substituting the values we have computed into Theorem 2.2:

chyL(s1\) = RAEAwo(g))—plw RANwo)(})
= RA(”’\l’wO)(sl)\) - RA(_”)‘l’wO)(sl)\ —nay)
= RAMMw0) (5 0) — RAOM0) (51X — nay)
1+e™ > 1+e™
= SIAP y esAmai—p L esiA=(n—1)ai—p,

Example 2: gy = sl(2,R). We may proceed as in the previous example, but substitute d,, = —1 instead
of §o, = 1.
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et et et
+etm +eHt
chsL(p)
+eh2
A1 2\ 31
° . .
,,,,,,,,,,,,,,,,,,, I
Cth(u) Ha1,1 H(lh? Ha1,3
et et et et
—eH— +eu—a1 +eu—a1 +6H—041
+e/¢—2a1 _eu—2a1 +€,u—2oq fehmal
_e[L73041 +e,u73a1 _e,u73oz1 +€,u73a1
+6H*4a1 —eh—4an +eu740¢1 —eh—4an

FIGURE 1. su(2)

Irreducible Verma modules: For A € h* such that (A, ay) € (n,n + 1) where n € Z3¢:
Zn (_1)n7i+12erﬁri/\fp 4 eAfp

cheM(\) = RAMMwol()) = =izl
[[ G—e [] Q+e)
aeAt (p,t) aeAt ()
D ) i et
B l—e™>
A—nai—p
_ e)\fp _ eAfpfoqu 4ot (_1)n716)\7(n71)a17p + (_l)nel_ﬁ'
Irreducible highest weight modules: For A = —n); where n € Z*:
erp
hsL(A) = che M(A\) = ————.
choL(N) = ch,M(N) = T
Since Ppye0 .= (—1)", we have
chsL(sih) = RAGMWI (s 0) — Plto |, RAC())
n—1 S1A—nag—p S1A—nai1—p
_ 1\, 51 A—ta1—p _nel _(—_1\" €
- (zz;)( e D 1—6_(“) Y <1—e—0‘1

_ eslk—p _ esl)\—ocl—p 4ot (_1)n—lesl)\—(n—1)a1—p.



et
_el‘f*al _el‘f*al
chgL
sL(p) 9ay
+et
A1 2\ 31
[ ] [ ] [ ]
””””” H H H, o R
ChSM(u) a,l ai,2 1,3
et et et et
+eHT* +eHTN +eHTn +eHt—n
+e/¢—2a1 _eu—2a1 +€,u—2oq fehmal
+et 3aq _e,ufSOcl _e,u73oz1 +€,u73a1
+6H*4a1 —eh—4an —eh—4a —eh—4an

FIGURE 2. sl(2)



