On the double cover of split F_4 and its petite K-types

Alessandra Pantano joint work with Dan Barbasch

Palo Alto, July 2006

Plan of the talk

- the double cover of split F_4
- the big unitarity problem (find all unitary parameters)
- the petit unitarity problem (find some not-unitary parameters)
- \bullet an informal definition of non-spherical petite K-types
- \bullet a formal definition of non-spherical petite K-types
- applications to the unitary dual of the double cover of split F_4

Plan of the talk

- the double cover of split F_4
- the big unitarity problem
- the petit unitarity problem
- \bullet an informal definition of non-spherical petite K-types
- ullet a more technical definition of petite K-types
- applications to the unitary dual of the double cover of split F_4

The double cover of F_4

- G = the double cover of the split F_4 ($F_4 = G/\{\pm I\}$)
- $\pi: G \to F_4 = G/\{\pm I\}$, the projection
- $K = SP(1) \times SP(3)$
- Representations of K (classified by highest weight): $\mu = (a_1|a_2, a_3, a_4)$, with $a_1 \geq 0$ and $a_2 \geq a_3 \geq a_4 \geq 0$
- Genuine K-types (-I does not act trivially): $\mu = (a_1|a_2, a_3, a_4)$, with $a_1 + a_2 + a_3 + a_4$ odd
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: Cartan decomposition of \mathfrak{g}
- \mathfrak{a} : maximal abelian subspace of \mathfrak{p} , $A = \exp(\mathfrak{a})$, $M = Z_K(\mathfrak{a})$
- $\Delta^+ = \{2\epsilon_j; \, \epsilon_i \pm \epsilon_j; \epsilon_1 \pm \epsilon_2 \pm \epsilon_3 \pm \epsilon_4\}, \, \mathfrak{n} = \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_\alpha, \, N = \exp(\mathfrak{n})$

Notations

For each root α , we can choose a Lie algebra homomorphism

$$\phi_{\alpha} \colon \mathfrak{sl}(2,\mathbb{R}) \to \mathfrak{g}$$

such that

•
$$Z_{\alpha} = \phi_{\alpha} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 belongs to $\mathfrak{t} = \text{Lie}(K)$

•
$$\sigma_{\alpha} = \exp(\frac{\pi}{2}Z_{\alpha})$$
 belongs to $M' = N_K(\mathfrak{a})$, and

•
$$\boxed{m_{\alpha}} = \exp(\pi Z_{\alpha})$$
 belongs to $M = Z_K(\mathfrak{a})$.

Metaplectic Roots

Exponentiating ϕ_{α} , we obtain group homomorphisms

$$\widetilde{\Phi}_{\alpha} \colon \widetilde{SL}(2,\mathbb{R}) \to G \qquad \Phi_{\alpha} \colon SL(2,\mathbb{R}) \to G/\pm I = F_4.$$

The root α is called metaplectic if $\widetilde{\Phi}_{\alpha}$ does not factor to $SL(2,\mathbb{R})$.

only the long roots are metaplectic

Consequences:

- If α is short, then m_{α} has order two and is central in M
- If α is long, then m_{α} has order four and $m_{\alpha}m_{\beta} = \pm m_{\beta}m_{\alpha}$
- If α is short, the eigenvalues of $d\mu(iZ_{\alpha})$ are integers $\forall \mu \in \hat{K}$
- If α is long, the eigenvalues of $d\mu(iZ_{\alpha})$ are integers if μ is not genuine, and half-integers if μ is genuine.

Fine *K*-types

Let μ be an irreducible representation of K. Then

• μ has level l if $|\gamma| \leq l$, for every eigenvalue γ of $d\mu(iZ_{\alpha})$ and every root α

• μ is fine if μ has level 1 (or less)

There are 2 genuine fine K-types: (1|000) and (0|100) and 3 non-genuine fine K-types: (2|000), (1|100) and (0|000).

The group M

The group $M = Z_K(\mathfrak{a})$ is a finite group of order 32. Because $\pi(M) = M/\{\pm I\}$ is abelian, the irreducible representations of M have dimension one or two.

There are 16 non-genuine linear characters, and 4 genuine two-dimensional irreducible representations.

The Weyl group acts on \hat{M} . The restrictions to M of a fine K-type is a single orbit, and every representation of M is contained in a unique fine K-type.

Definition: Fix $\delta \in \hat{M}$. A root α is good for δ if s_{α} stabilizes δ .

		orbit	dim.	$W(\delta)$	fine K-type
non-genuine	\longrightarrow	δ_0	1	$W(F_4)$	(0 0,0,0)
				II. ((())	(2 0,0,0)
non-genuine	\rightarrow	δ_3	3×1	$W(C_4)$	(2 0,0,0)
non-genuine	\longrightarrow	δ_{12}	12×1	$W(B_3A_1)$	(1 1,0,0)
				(3 1)	
genuine	\longrightarrow	$oxed{\delta_2}$	2	$W(F_4)$	(1 0,0,0)
genuine	\longrightarrow	$ \delta_6 $	3×2	$W(B_4)$	(0 1,0,0)

Plan of the talk

- the double cover of split F_4
- the big unitarity problem
- the petit unitarity problem
- \bullet an informal definition of petite K-types
- \bullet a more technical definition of petite K-types
- applications to the unitary dual of the double cover of split F_4

Langlands quotient

For every irreducible representation (δ, V^{δ}) of M, and every strictly dominant real character ν , we set

 $X_P(\delta,
u)$ = the minimal principal series induced from $\delta \otimes
u$

 $X_P(\delta, \nu)$ = the unique irreducible composition factor of $X_P(\delta, \nu)$ which contains the fine K-type μ_{δ} corresponding to δ .

The Langlands quotient $\bar{X}_P(\delta, \nu)$ can be obtained as the quotient of $X_P(\delta, \nu)$ modulo the Kernel of an intertwining operator

$$A: X_P(\delta, \nu) \longrightarrow X_{\bar{P}}(\delta, \nu)$$

where \bar{P} is the opposite parabolic.

The big unitarity problem

For every irreducible representation δ of M, compute the set of unitary parameters

 $\{\nu \in \mathfrak{a} \cap \mathbb{R} : \nu \text{ is dominant and } \bar{X}_P(\delta, \nu) \text{ is unitary}\}$

To check the unitarity of $\bar{X}_P(\delta, \nu)$, we need to

- 1. construct an invariant Hermitian form on $\bar{X}_P(\delta, \nu)$, if possible
- 2. verify whether this Hermitian form is positive definite.

Invariant Hermitian forms on $\bar{X}_P(\delta, \nu)$

The long Weyl group element of F_4 ($\omega = -Id$) carries δ into δ and ν in $-\nu$. So we can use ω to construct an *Hermitian* intertwining operator

$$A(\omega, \delta, \nu) \colon X_P(\delta, \nu) \to X_P(\delta, -\nu).$$

This operator gives a *non degenerate* invariant Hermitian form on the Langlands quotient.^a

 $\bar{X}_P(\delta,\nu)$ is unitary if and only if $A(\omega,\delta,\nu)$ is positive semidefinite.

^aBecause $\bar{X}_P(\delta, \nu)$ contains only one copy of the fine K-type μ_δ corresponding to δ , we can normalize the operator by requiring that it acts trivially μ_δ . Then we obtain the *unique* non-degenerate invariant Hermitian form on $\bar{X}_P(\delta, \nu)$.

Remarks

The big unitarity problem is too hard:

Computing the signature of the operator $A(\omega, \delta, \nu)$ is extremely complicated, especially if the K-type is very big.

Moreover, we should check the signature on infinitely many K-types.

Instead, we look at the petit unitarity problem.

Plan of the talk

- the double cover of split F_4
- the big unitarity problem
- the petit unitarity problem
- \bullet an informal definition of petite K-types
- \bullet a more technical definition of petite K-types
- applications to the unitary dual of the double cover of split F_4

the petit unitarity problem

- find finitely many K-types (called "**petite**") on which it is easy to compute the signature of the intertwining operator
- use these petite K-types to rule out big regions of not-unitarity.^a

^aThe notion of spherical petite K-type is due to Vogan and Barbasch. We will present a generalization to the non-spherical case.

Spherical Petite K-Types

Let be μ a spherical K-type, i.e. assume that $Res_M(\mu)$ contains the trivial representation of M.

 μ is called **petite** if it has level ≤ 3 .

Remark: if μ is a spherical petite K-type, then $d\mu(Z_{\alpha}^2)$ acts on the isotypic component of the trivial representation of M with eigenvalues 0 or -4. This condition makes the intertwining operator on μ "very special", and relatively easy to compute.

intertwining operator on spherical petite K-types

The intertwining operator has a decomposition as a product of operators corresponding to simple reflections.

The factor corresponding to α acts by

Intertwining operator on spherical petite K-types

On a spherical petite K-type the intertwining operator behaves exactly like a p-adic operator.

Because the p-adic spherical unitary dual in known, this matching provides **non-unitarity certificates**.

We obtain an embedding of the real <u>spherical</u> unitary dual into the p-adic spherical unitary dual.

Plan of the talk

- the double cover of split F_4
- the big unitarity problem
- the petit unitarity problem
- \bullet an informal definition of non-spherical petite K-types
- \bullet a more technical definition of petite K-types
- applications to the unitary dual of the double cover of split F_4

non-spherical petite *K*-types: an informal definition

To every non-trivial representation δ of M, we associate a real linear group G_0 (depending on δ).

A K-type μ containing δ is called "**petite for** δ " if the non-spherical intertwining operator for G on μ matches a spherical intertwining operator for G_0 on some petite K_0 -type μ_0 .

The spherical unitary dual of G_0 is known, and is detected by a finite number of relevant K_0 -types.

If we can match all the relevant K_0 -types, then we obtain non-unitarity certificates for Langlands quotients of G:

 $\bar{X}^G(\delta, \nu)$ is unitary $\Rightarrow \bar{X}^{G_0}(\text{triv}, \nu_0)$ is unitary.

the linear group $G_0 = G_0(\delta)$

The Weyl group W of G acts on \hat{M} by

$$([\sigma] \cdot \tau)(m) = \tau(\sigma^{-1}m\sigma).$$

Let $W(\delta) \subseteq W$ be the stabilizer of δ .

It turns out that $W(\delta)$ is the Weyl group of some root system Δ_0 . Δ_0 has the same rank as Δ , and in general is not a sub-root system.

We define G_0 to be

- the real split group with root system Δ_0 if δ is non-genuine
- the real split group with root system $\left| \check{\Delta_0} \right|$ if δ is genuine.

 G_0 is always linear, and in general is not a subgroup of G.

		orbit-type	Δ_0	linear group $G_0(\delta)$
non-genuine	\longrightarrow	δ_0	F_4	F_4
non-genuine	\longrightarrow	δ_3	C_4	SP(4)
non-genuine	\longrightarrow	δ_{12}	B_3A_1	$SO(3,4) \times SL(2)$
genuine	\longrightarrow	δ_2	F_4	F_4
genuine	\longrightarrow	δ_6	B_4	SP(4)

If we have "enough" petite K-types for δ , then we can relate the unitarity of a Langlands quotient of G induced from δ to the unitarity of a Langlands quotient of $G_0(\delta)$ induced from the trivial.

the spherical K_0 -type μ_0

Suppose that there exists a spherical K_0 -type μ_0 s.t.

- 1. μ_0 has level at most 3
- 2. as $W(\delta)$ -representations

$$\text{Hom}_{M}(V^{\mu}, V^{\delta}) = \text{Hom}_{M_{0}}(V^{\mu_{0}}, V^{\delta_{0}}).$$

Then μ is petite if and only if the intertwining operator for G on μ matches an intertwining operator for G_0 on μ_0 .

Plan of the talk

- the double cover of split F_4
- the big unitarity problem
- the petit unitarity problem
- \bullet an informal definition of non-spherical petite K-types
- a more technical definition of petite *K*-types
- applications to the unitary dual of the double cover of split F_4

non-spherical petite *K*-types: a more technical definition

Let μ be a K-type containing δ . If μ is petite, the intertwining operator on μ should have certain properties (...).

The intertwining operator acts on

$$\operatorname{Hom}_M(V^{\mu}, V^{\mu_{\delta}}) = \bigoplus_j \operatorname{Hom}_M(V^{\mu}, V^{\delta_j})$$

and depends on the eigenvalues of the $d\mu(Z_{\alpha}^2)$'s (α simple) on the isotypic component in μ of all the M-types δ_j in the W-orbit of δ .^a

To define a petite K-type for δ , we essentially need to impose some restrictions on the eigenvalues of the various Z_{α}^2 's.

 $^{{}^{\}mathrm{a}}\mu_{\delta}$ is the unique fine K-type containing δ . Every M-type δ_{j} in the W-orbit of δ appears in μ_{δ} with multiplicity one: $\mathrm{Res}_{M}(\mu_{\delta}) = \bigoplus_{j} \delta_{j}$.

non-spherical petite K-types: a more technical definition

Let μ be a K-type containing δ . If μ is petite, the intertwining operator on μ should should have certain properties (...).

The intertwining operator acts on

$$\operatorname{Hom}_{M}(V^{\mu}, V^{\mu_{\delta}}) = \bigoplus_{j} \operatorname{Hom}_{M}(V^{\mu}, V^{\delta_{j}})$$

and depends on the eigenvalues of the various $d\mu(Z_{\alpha}^2)$'s on the isotypic component in μ of the W-orbit of δ .^a

It is clear that the definition of petite K-type must be a restriction on these eigenvalues.

 $^{{}^{\}mathrm{a}}\mu_{\delta}$ is the unique fine K-type containing δ . Every M-type δ_{j} in the W-orbit of δ appears in μ_{δ} with multiplicity one: $\mathrm{Res}_{M}(\mu_{\delta}) = \bigoplus_{j} \delta_{j}$.

Technicalities

- The intertwining operator on μ has a factorization as a product of operators $R_{\mu}(s_{\alpha}, \gamma)$ corresponding to simple reflections.
- The action of a single factor $R_{\mu}(s_{\alpha}, \gamma)$ does not respect the decomposition

$$\operatorname{Hom}_M(V^{\mu}, V^{\mu_{\delta}}) = \bigoplus_j \operatorname{Hom}_M(V^{\mu}, V^{\delta_j})$$

but preserves the decomposition of $\operatorname{Hom}_M(V^{\mu}, V^{\mu_{\delta}})$ in eigenspaces of $d\mu(Z_{\alpha}^2)$: $\operatorname{Hom}_M(V^{\mu}, V^{\mu_{\delta}}) = \bigoplus_{n \in \mathbb{N}/2} E(-n^2)$.

• $R_{\mu}(s_{\alpha}, \gamma)$ acts on the $(-n^2)$ -eigenspace of $d\mu(Z_{\alpha}^2)$ by

$$R_{\mu}(s_{\alpha}, \gamma)T(v) = \underbrace{c(\alpha, \gamma, n)}_{a \ scalar} \underbrace{\mu_{\delta}(\sigma_{\alpha})T(\mu(\sigma_{\alpha})^{-1}v)}_{a \ ction \ of \ s_{\alpha} \ on \ \operatorname{Hom}_{M}(V^{\mu}, V^{\mu_{\delta}})}$$

example 1: $d\mu(Z_{\alpha}^2)$ has even eigenvalues

The operator $R_{\mu}(s_{\alpha}, \gamma)$ acts on $\left[\bigoplus_{n \in 2\mathbb{N}} E\left(-n^{2}\right)\right]$ by

with $x = \langle \gamma, \check{\alpha} \rangle$.

example 2: $d\mu(Z_{\alpha}^2)$ has odd eigenvalues

The operator $R_{\mu}(s_{\alpha}, \gamma)$ acts on $\left[\bigoplus_{n \in 2\mathbb{N}+1} E\left(-n^{2}\right)\right]$ by

$$E(-1) \qquad E(-9) \qquad E(-25) \qquad E(-49)$$

$$1 \cdot s_{\alpha} \qquad \left| \begin{array}{c} \frac{2-x}{2+x} \cdot s_{\alpha} \end{array} \right| \qquad \frac{2-x}{2+x} \frac{4-x}{4+x} \cdot s_{\alpha} \qquad \left| \begin{array}{c} \frac{2-x}{2+x} \frac{4-x}{4+x} \frac{6-x}{6+x} \cdot s_{\alpha} \end{array} \right|$$

$$E(-1) E(-9) E(-25) E(-49)$$

with $x = \langle \gamma, \check{\alpha} \rangle$.

example 3: $d\mu(Z_{\alpha}^2)$ has half-integers eigenvalues

The operator $R_{\mu}(s_{\alpha}, \gamma)$ acts on $\left[\bigoplus_{n \in \mathbb{N} + \frac{1}{2}} E\left(-n^{2}\right)\right]$ by

$$E(-\frac{1}{4}) \qquad E(-\frac{9}{4}) \qquad E(-\frac{25}{4}) \qquad E(-\frac{49}{4})$$

$$E(-\frac{1}{4})$$
 $E(-\frac{9}{4})$ $E(-\frac{25}{4})$ $E(-\frac{49}{4})$

with $x = \langle \gamma, \check{\alpha} \rangle$.

intertwining operator on non-spherical petite K-types

If μ is a petite K-type, every factor $R_{\mu}(s_{\alpha_i}, \gamma_i)$ of the intertwining operator must satisfy some conditions.

These conditions depend on whether the reflection s_{α_i} stabilizes a certain M-type δ_i in the orbit of δ .^a

- If α_i stabilizes δ_i (i.e. it is good for δ_i), then $R_{\mu}(s_{\alpha_i}, \gamma_i)$ should behave as a factor of a petite spherical intertwining operator.
- If α_i does not stabilize δ_i (i.e. it is <u>bad</u> for δ_i), then $R_{\mu}(s_{\alpha_i}, \gamma_i)$ should be independent of the parameter γ_i .

This behavior is equivalent to some eigenvalues-restrictions.

^aIf $\alpha_1, \alpha_2 \dots \alpha_r$ are the simple reflections involved in the decomposition, we define inductively $\delta_1 = \delta, \delta_2 = s_{\alpha_1}(\delta_1), \dots, \delta_r = s_{\alpha_{r-1}}(\delta_{r-1}).$

restrictions for μ petite and α_i good for δ_i

Look at the eigenvalues of $d\mu(Z_{\alpha_i}^2)$ on the δ_i -isotypic in μ . If the eigenvalues are of the form $-(2n)^2$, we only allow 0 and -4

If the eigenvalues are of the form $-\left(\frac{2n+1}{2}\right)^2$, we only allow $-\frac{1}{4}$, $-\frac{9}{4}$

restrictions for μ petite and α_i bad for δ_i

Again, look at the eigenvalues of $d\mu(Z_{\alpha_i}^2)$ on the δ_i -isotypic in μ . If the eigenvalues are of the form $-(2n+1)^2$, we only allow -1

If the eigenvalues are of the form $-\left(\frac{2n+1}{2}\right)^2$, we only allow $-\frac{1}{4}$

The Main Theorem

Let μ be a petite K-type for δ , i.e. assume that μ satisfies the eigenvalues-conditions described above.

Suppose that there exists a spherical K_0 -type μ_0 s.t.

- 1. μ_0 has level at most 3
- 2. as $W(\delta)$ -representations

$$\operatorname{Hom}_{M}(V^{\mu}, V^{\delta}) = \operatorname{Hom}_{M_{0}}(V^{\mu_{0}}, V^{\delta_{0}}).$$

Then the intertwining operator for G on μ matches an intertwining operator for G_0 on μ_0 .

A technical remark

Let μ be a petite K-type. The restrictions on the eigenvalues of $d\mu(Z_{\alpha_i}^2)$ are "local" conditions: they are imposed on the isotypic of the various δ_i in μ , not "globally" on μ .

It follows that, if δ is non-trivial, we cannot identify a petite K-type for δ just by looking at its level.^a Most often, an explicit construction of the K-type is required.^b

This is just one of the many complications that make the non-spherical case so much harder than the spherical one.

^aIf δ is trivial, every K-type of level at most 3 is petite. If δ is non-trivial, only about a half of the K-types of level 3 turns out to be petite.

^bWe have constructed all our petite K-types using mathematica.

genuine petite K-types and other K-types of level ≤ 3

K-type	mult. of δ_6
(0 1,0,0)	1
(2 1,0,0)	3
(1 2,0,0)	4
(1 1,1,0)	4
(0 1,1,1)	1
(2 1,1,1)	3
(4 1,0,0)	5
(3 2,0,0)	8
(3 1,1,0)	8
(0 3,0,0)	5
(2 3,0,0)	8
(0 2,1,0)	8
(2 2,1,0)	5
(1 2,1,1)	8

K-type	mult. of δ_2
(1 0,0,0)	1
(3 0,0,0)	2
(1 2,0,0)	9
(1 1,1,0)	2
(0 1,1,1)	4
(2 1,1,1)	12
(5 0,0,0)	3
(3 2,0,0)	18
(3 1,1,0)	4
(0 3,0,0)	4
(2 3,0,0)	12
(0 2,1,0)	8
(2 2,1,0)	24
(1 2,1,1)	10

Plan of the talk

- the double cover of split F_4
- the big unitarity problem
- the petit unitarity problem
- \bullet an informal definition of non-spherical petite K-types
- \bullet a more technical definition of petite K-types
- applications to the unitary dual

Find a good definition of $petite\ K$ -types

 \downarrow

For each given δ , find all the petite K-types

 \downarrow

For each μ petite, find the representation of the stabilizer of δ on $\operatorname{Hom}_M(V^{\mu}, V^{\delta})$. Guess μ_0

 \downarrow

Verify that the intertwining operators match

If you can match all the relevant K_0 -types, deduce the existence of an inclusion of unitary duals

Otherwise, compute the intert. operator on some non-petite K-types and see what happens

example 1: δ_2

 δ_2 is an irreducible genuine representation of M.

The stabilizer of δ_2 is the entire Weyl group $W = W(F_4)$. In particular, every root of F_4 is good for δ_2 . This is an easy example!

We ask whether it is possible to realize all the relevant W(F4)-types using petite K-types for δ_2 .

The relevant $W(F_4)$ -types are: $1_1, 2_1, 2_3, 4_2, 8_1$ and 9_1 .

$oxed{egin{array}{ c c c c c c c c c c c c c c c c c c c$	mult. of δ_2	repres. of $W(F_4)$
(1 0,0,0)	1	1_1
(3 0,0,0)	2	2_3
(1 2,0,0)	9	9_1
(1 1,1,0)	2	2_1
(0 1,1,1)	4	4_2
(0 3,0,0)	4	4_3
(0 2,1,0)	8	81
(1 2,1,1)	10	$1_2 + 9_2$

We match all of them! So there is an inclusion of unitary duals:

 $\bar{X}^G(\delta_2, \nu)$ unitary $\Rightarrow \bar{X}^G(\text{triv}, \nu)$ unitary.

example 2: δ_{12}

Choose a set of simple roots for G (type F_4):

$$\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4$$
 $\epsilon_3 - \epsilon_4$
 $\epsilon_2 - \epsilon_3$

 δ_{12} contains 12 one-dimensional representations of M. For each of them, the stabilizer is $W(B_3 \times A_1)$.

Let $\bar{\delta}_{12}$ be the character in δ_{12} that admits

$$2\epsilon_4$$
 $\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4$ $\epsilon_2 + \epsilon_3$ $\epsilon_2 - \epsilon_3$

as a basis for the good roots.

The following table shows that we can realize all the relevant $W(B_3)$ -types and all the relevant $W(A_1)$ -types using petite K-types for $\overline{\delta}_{12}$:

$oxed{egin{array}{ c c c c c c c c c c c c c c c c c c c$	mult. of δ_{12}	repres. of $W(B_3 \times A_1)$
(1 1,0,0)	1	$(3 \times 0) \times triv$
(0 1,1,0)	1	$(3 \times 0) \times sign$
(3 1,0,0)	2	$(21 \times 0) \times triv$
(2 1,1,0)	3	$(2 \times 1) \times triv$
(2 2,0,0)	3	$(1 \times 2) \times sign$
(0 2,0,0)	1	$(0 \times 3) \times triv$

Because we can match all the relevant $W(B_3 \times A_1)$ -types, there exists an inclusion of unitary duals:^a

$$\bar{X}^G(\delta_{12}, \gamma)$$
 unitary $\Rightarrow \bar{X}^{SO(3,4) \times SL(2)}(\text{triv}, \gamma_0)$ unitary

Notice that there is a shifting of parameters: if $\gamma = (n_1, n_2, n_3, n_4)$, then $\gamma_0 = (n_1 + n_4, n_1 - n_4, n_2 + n_3, n_2 - n_3)$.

 $^{^{\}mathrm{a}}SO(3,2)\times SL(2)$ is the real split group with root system $B_3\times A_1$.

If $\gamma = (n_1, n_2, n_3, n_4)$ is the parameter for F_4 , let $\gamma_0 = (\tilde{n}_1, \tilde{n}_2, \tilde{n}_3, \tilde{n}_4)$ be the corresponding parameter for $B3 \times A1$.

The inner product of γ with a basis for the good co-roots in F_4 should match the inner product of γ_0 with the simple co-roots in $B_3 \times A_1$:

example 3: δ_6

 δ_6 contains three 2-dimensional irreducible representations of M. For each of them, the stabilizer of δ is W(B4).

Let $\bar{\delta}_6$ the irreducible component of δ_6 that admits

as a basis for the good roots.

We would like to realize all the relevant $W(B_4)$ -types using petite K-types for $\overline{\delta}_6$.

The following is a *complete* list of petite K-types for $\bar{\delta}_6$:

$oxed{egin{array}{c} oxed{ ext{petite}} \ K ext{-type} \end{array}}$	mult. of $\bar{\delta}_6$	repres. of $W(B_4)$
(0 1,0,0)	1	4×0
(2 1,0,0)	3	31×0
(1 2,0,0)	4	1×3
(1 1,1,0)	4	3×1
(0 1,1,1)	1	0×4
(2 1,1,1)	3	0×31

The relevant $W(B_4)$ -types are:

$$4 \times 0$$
 31×0 3×1 2×2 1×3 0×4 .

We cannot match $2 \times 2!!!$

The relevant $W(B_4)$ -type 2×2 is missing. So we cannot deduce an inclusion of unitary duals.

We only get a weaker result:^a

set of unitary parameters \subseteq parameters \subseteq for $(\bar{\delta}_6, G)$ set of unitary \subseteq non-unitarity region for $(\bar{\delta}_6, G)$ for (triv, SP(4)) ruled out by 2×2

The region ruled out by 2×2 consists of all parameters of the form $\gamma_0 = (a + 1/2, a - 1/2, b, 1)$ with (a, b) in the *triangle* delimited by the lines a = 1/2, b = 0 and a + b = 3/2.

aNotice that the stabilizer of $\bar{\delta}_6$ is of type B_4 but we are taking $G_0 = SP(4)$. Indeed, $\bar{\delta}_6$ is genuine, so G_0 must be the split group with *co-roots* of type B_4 .

example 4: δ_3

 δ_3 contains three 1-dimensional irreducible representations of M. For each of them, the stabilizer of δ is W(C4).

Let $\bar{\delta}_3$ the irreducible component of δ_3 that admits

as a basis for the good roots.

Next, we look at the *complete* list of petite K-types for $\bar{\delta}_3$, and we hope to realize all the relevant $W(C_4)$ -types: $4 \times 0 \quad 0 \times 4$ $3 \times 1 \quad \boxed{1 \times 3} \quad 2 \times 2 \quad 31 \times 0$.

$\boxed{ \textbf{petite } K\textbf{-type} }$	mult. of $\bar{\delta}_3$	repres. of $W(C_4)$
(2 0,0,0)	1	4×0
(4 0,0,0)	1	0×4
(0 2,0,0)	3	31×0
(2 2,0,0)	6	2 imes 2
(2 1,1,0)	2	22×0
(1 3,0,0)	4	111×1
(1 2,1,0)	8	21×1
(1 1,1,1)	4	3×1
(0 2,1,1)	3	211×0
(2 2,1,1)	7	$11 \times 11 + 1111 \times 0$

We cannot match $1 \times 3!!!$

The relevant $W(C_4)$ -type 1×3 is missing. So we cannot deduce an inclusion of unitary duals.

Just like before, we only obtain a weaker result:

set of unitary parameters \subseteq parameters \subseteq for $(\bar{\delta}_3, G)$ \subseteq for (triv, SP(4)) \subseteq for (triv, SP(4)) ruled out by 1×3

The region ruled out by 1×3 is the *line segment*

$$\gamma_0 = (3/2 + t, 1/2 + t, -1/2 + t, -3/2 + t)$$

with $1/2 \le t \le 3/2$.

