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The double cover of F I

G = the double cover of the split Fy (Fy = G/{£I})
w: G — Fy = G/{+£I}, the projection
K= SP(1) x SP(3)

Representations of K (classified by highest weight):
w = (ai|as, as, aq), with a; > 0 and ag > a3z > a4 > 0

Genuine K-types (—1I does not act trivially):
w = (ai|as, as, aq), with a; + as 4+ as + a4 odd

g = €D p: Cartan decomposition of g

a: maximal abelian subspace of p, A = exp(a), M = Zk(a)

AT ={2€; ¢, €60 eatestes), n=Dyeca+8a, N = exp(n)




Notations '

For each root a, we can choose a Lie algebra homomorphism
$a:8l(2,R) — g
such that

0

1
Do belongs to t = Lie(K)
-1 0

= exp(5 Za) belongs to M’ = Nk (a), and

= exp(mZ,) belongs to M = Zk(a).




Metaplectic Roots I

Exponentiating ¢, we obtain group homomorphisms

®,: SL(2,R) = G ®,: SL(2,R) — G/£I = F}.

The root « is called metaplectic if ®,, does not factor to SL(2, R).

only the long roots are metaplectic

Consequences:
e If o is short, then m, has order two and is central in M
e If o is long, then m, has order four and m,mg = £mgms,
e If a is short, the eigenvalues of du(iZ,) are integers V pu € K

e If o is long, the eigenvalues of du(iZ,) are integers if p is not

genuine, and half-integers if 1 is genuine.




Fine K-types I

Let u be an irreducible representation of K. Then

e 1 has level [ if |y| <, for every eigenvalue v of du(iZ,) and

every root «

e 1 is fine if p has level 1 (or less)

There are 2 genuine fine K-types: (1|000) and (0]|100)
and 3 non-genuine fine K-types: (2/000), (1/100) and (0]000).




The group M I

The group M = Zk(a) is a finite group of order 32. Because
w(M) = M/{+£I} is abelian, the irreducible representations of M

have dimension one or two.

There are 16 non-genuine linear characters, and 4 genuine

two-dimensional irreducible representations.

The Weyl group acts on M. The restrictions to M of a fine K-type

is a single orbit, and every representation of M is contained in a

unique fine K-type.

Definition: Fix § € M. A root « is good for ¢ if s, stabilizes 0.




fine K-type

non-genuine (0]0,0,0)

non-genuine (2]0,0,0)

non-genuine (1]1,0,0)

genuine (1]0,0,0)

genuine (0]1,0,0)
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Langlands quotient I

For every irreducible representation (8, V°) of M, and every

strictly dominant real character v, we set

Xp(0,v) | = the minimal principal series induced from § ® v

Xp(8,v) | =the unique irreducible composition factor of Xp(d,v)

which contains the fine K-type ps corresponding to .

The Langlands quotient X p(d, ) can be obtained as the quotient
of Xp(d,v) modulo the Kernel of an intertwining operator

A: Xp(d,v) — Xp(0,v)

where P is the opposite parabolic.




The big unitarity problem'

For every irreducible representation o of M, compute the set of
unitary parameters

{v € anR: vis dominant and Xp(6,v) is unitary}

To check the unitarity of Xp(6,v), we need to
1. construct an invariant Hermitian form on Xp((S, v), if possible

2. wverify whether this Hermitian form is positive definite.




Invariant Hermitian forms on Xp(4, v)

The long Weyl group element of F, (w = —Id) carries  into ¢ and
v in —v. So we can use w to construct an Hermitian intertwining

operator
Alw,0,v): Xp(6,v) — Xp(d, —v).

This operator gives a non degenerate invariant Hermitian form on

the Langlands quotient.?

Xp(6,v) is unitary if and only if A(w,d,v) is positive semidefinite.

2Because X p(d, ) contains only one copy of the fine K-type us corresponding
to d, we can normalize the operator by requiring that it acts trivially us.

Then we obtain the unique non-degenerate invariant Hermitian form on X p (4, v).




Remarks '

The big unitarity problem s too hard:

Computing the signature of the operator A(w,d,v) is extremely
complicated, especially if the K-type is very big.
Moreover, we should check the signature on infinitely many

K-types.

Instead, we look at the petit unitarity problem.
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the petit unitarity problem I

e find finitely many K-types (called “petite”) on which it is easy

to compute the signature of the intertwining operator

e use these petite K-types to rule out big regions of

not-unitarity.®

The notion of spherical petite K-type is due to Vogan and Barbasch. We
will present a generalization to the non-spherical case.




Spherical Petite K-Types I

Let be u a spherical K-type, i.e. assume that Resp;(u) contains
the trivial representation of M.

1 is called petite if it has level < 3.

Remark: if i is a spherical petite K-type, then du(Z?) acts
on the isotypic component of the trivial representation of M with

etgenvalues 0 or —4. This condition makes the intertwining

operator on u “very special”, and relatively easy to compute.




intertwining operator on spherical petite K -types.

The intertwining operator has a decomposition as a product of

operators corresponding to simple reflections.

The factor corresponding to a acts by




Intertwining operator on spherical petite K-types I

On a spherical petite K-type the intertwining operator behaves

exactly like a p-adic operator.

Because the p-adic spherical unitary dual in known, this matching

provides non-unitarity certificates.

We obtain an embedding of the real spherical unitary dual into the

p-adic spherical unitary dual.
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non-spherical petite K-types: an informal deﬁnition'

To every non-trivial representation 0 of M, we associate a real
linear group Gy (depending on §).

A K-type p containing 9 is called “petite for ¢” if
the non-spherical intertwining operator for G on u© matches
a spherical intertwining operator for GGy on some petite Ko-type uo.

The spherical unitary dual of GGy is known, and is detected by a
finite number of relevant Ky-types.

If we can match all the relevant Ky-types, then we obtain
non-unitarity certificates for Langlands quotients of G:

XY (6,v) is unitary = X“°(triv, 1) is unitary.




the linear group Gy=G((9)

The Weyl group W of G acts on M by

([o] - T)(m) = 7(6'mo).

Let W (d) C W be the stabilizer of 4.

It turns out that W (J) is the Weyl group of some root system Ay.
Ag has the same rank as A, and in general is not a sub-root system.

We define Gy to be

e the real split group with root system | A | if ¢ is non-genuine

e the real split group with root system | Ag | if § is genuine.

G is always linear, and in general is not a subgroup of G.




orbit-type linear group Gy(9)

non-genuine Fy

non-genuine SP(4)
non-genuine S0O(3,4) x SL(2)

genuine

genuine

If we have “enough” petite K-types for d, then we can relate the

unitarity of a Langlands quotient of G induced from ¢ to the

unitarity of a Langlands quotient of G(d) induced from the trivial.




the spherical Ky-type Ly I

Suppose that there exists a spherical Ky-type ug s.t.
1. po has level at most 3

2. as W (d)-representations

Hom; (V*,V?°) = Homyy, (VF0, V),

Then u s petite if and only if the intertwining operator for G on u

matches an intertwining operator for Gg on uy.
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non-spherical petite K-types: a more technical definition I

Let 1 be a K-type containing d. If u is petite, the intertwining
operator on p should have certain properties (... ).

The intertwining operator acts on

Hom, (VH, VH) = @ Hom / (V*, Véj)

J

and depends on the eigenvalues of the du(Z2)’s (o simple) on the
isotypic component in p of all the M-types 0, in the W-orbit of 9.?

To define a petite K-type for 0, we essentially need to impose some
restrictions on the eigenvalues of the various Z2’s.

®1s is the unique fine K-type containing 6. Every M-type ¢; in the W-orbit
of § appears in pus with multiplicity one: Resps(us) = EBj dj.




non-spherical petite K-types: a more technical definition I

Let 1 be a K-type containing d. If u is petite, the intertwining
operator on p should should have certain properties (... ).

The intertwining operator acts on

Hom, (VH, VH) = @ Hom / (V*, Véj)

J

and depends on the eigenvalues of the various du(Z2)’s on the
isotypic component in p of the W-orbit of 4.2

It is clear that the definition of petite K-type must be a restriction
on these eigenvalues.

®1s is the unique fine K-type containing 6. Every M-type ¢; in the W-orbit
of § appears in pus with multiplicity one: Resps(us) = EBj dj.




Technicalities '

e The intertwining operator on p has a factorization as a product
of operators R, (Sq,7) corresponding to simple reflections.

e The action of a single factor R,,(s,7) does not respect the
decomposition

Hom, (V#, VH) = ED Hom s (V#, V5j)
J
but preserves the decomposition of Hom, (V#, V#3) in

eigenspaces of du(Z2): | Homy, (VH*, V) @ E(—
neN/2

e R,(s4,7) acts on the (—n?)-eigenspace of du(Z2) by

Ru(sa, )T () = el y.n) - p18(00)T(u(0a) " 0)

~~

a scala//“ action of so on Homp (VH# VHS)




example 1: du(Z2) has even eigenvalues

The operator R, (sq,7) acts on |, con E (—12)] by

E(0) E(—16)
°

|




example 2: du(Z?) has odd eigenvalues

The operator R,,(sq4,7y) acts on [@nEQNH

E(—25)
®

|




example 3: du(Z2?) has half-integers eigenvalues

The operator R,,(sq4,7y) acts on {EB%NJF% E (—nQ)} by

E(—22)

(_
@
@




intertwining operator on non- spherical petite K -types'

If 11 is a petite K-type, every factor R, (Sq,,7:) of the intertwining

operator must satisfy some conditions.

These conditions depend on whether the reflection s, stabilizes a
certain M-type 9; in the orbit of 9.2

o If ; stabilizes §; (i.e. it is good for ¢;), then R, (s4,,7:) should

behave as a factor of a petite spherical intertwining operator.

o If a; does not stabilize 9; (i.e. it is bad for ¢;), then R, (sq,,7i)
should be independent of the parameter ;.

This behavior is equivalent to some eigenvalues-restrictions.

aIf a1, 2 ..., are the simple reflections involved in the decomposition, we
define inductively 1 = 9,02 = sa;(01) , ..., 6r = Sa,._; (0r—1).




restrictions for y petite and «; good for 9, I

Look at the eigenvalues of du(Z3 ) on the d;-isotypic in p.

If the eigenvalues are of the form —(2n)?, we only allow 0 and —4

E (0)

ilSa/L

(
E (0)




restrictions for u petite and «; bad for 9, I

Again, look at the eigenvalues of du(Z2 ) on the d;-isotypic in p.

If the eigenvalues are of the form —(2n + 1)2, we only allow —1
E(=1) E (= E (—25)
: VA

e

E(=1) E(—-9)




The Main Theorem'

Let 1 be a petite K-type for ¢, i.e. assume that u satisfies the
eigenvalues-conditions described above.

Suppose that there exists a spherical Kq-type g s.t.
1. po has level at most 3

2. as W(6)-representations

Hom, (V*,V?°) = Homyy, (VF0, V),

Then the intertwining operator for G on i matches an intertwining
operator for Gg on L.




A technical remark '

Let 11 be a petite K-type. The restrictions on the eigenvalues of

du(Z3 ) are “local” conditions: they are imposed on the isotypic of

the various 9; in u, not “globally” on u.

It follows that, if 0 is non-trivial, we cannot identify a petite
K-type for § just by looking at its level.?
Most often, an explicit construction of the K-type is required.P

This is just one of the many complications that make the
non-spherical case so much harder than the spherical one.

aIf 9 is trivial, every K-type of level at most 3 is petite. If § is non-trivial,

only about a half of the K-types of level 3 turns out to be petite.
PWe have constructed all our petite K-types using mathematica.




genuine petite K-types and other K-types of level < 3

K-type || mult. of dg4 K-type || mult. of
(0]1,0,0) 1 (1]0,0,0) 1
(2]1,0,0) 3 (3]0,0,0) 2
(1]2,0,0) 4 (1]2,0,0) 9
(1]1,1,0) 4 (1]1,1,0) 2
(0[1,1,1) 1 (0]1,1,1) 4
(2]1,1,1) 3 (2]1,1,1) 12
(4]1,0,0) 5 (50,0,0) 3
(3]2,0,0) 8 (3]2,0,0) 18
(3]1,1,0) 8 (3]1,1,0) 4
(0]3,0,0) 5 (0]3,0,0) 4
(2]3,0,0) 8 (2]3,0,0) 12
(02,1,0) 8 (012,1,0) 8
(2]2,1,0) 5 (2]2,1,0) 24
(112,1,1) 8 (112,1,1) 10

30-1
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Find a good definition of petite K -types

l
For each given 9, find all the petite K-types

l

For each u petite, find the representation of the
stabilizer of 6 on Hom; (V#,V?). Guess po

l

Verify that the intertwining operators match

52, 512 / \ 537 56

If you can match all the relevant || || Otherwise, compute the intert.

Ko-types, deduce the existence || || operator on some non-petite

of an inclusion of unitary duals || || K-types and see what happens




example 1: 0, I

0o is an irreducible genuine representation of M.

The stabilizer of d5 is the entire Weyl group W = W (Fy). In
particular, every root of Fj is good for d5. This is an easy example!

We ask whether it is possible to realize all the relevant

W (F4)-types using petite K-types for 5.




The relevant W (Fy)-types are: 11, 21, 23, 42, 81 and 9.

petite K-type || mult. of é; || repres. of W (Fy)
(1 1
3 2
1 9
1 2
4
4
8

0

(
(
(
(
(
(
(

1 10 1o 4+ 99

We match all of them! So there is an inclusion of unitary duals:

X% (63,v) unitary = X (triv,v) unitary.




example 2: 01 I

Choose a set of simple roots for G (type Fy):

€] — €2 — €3 — €4 2€4
® )

012 contains 12 one-dimensional representations of M. For each of
them, the stabilizer is W (B3 x A;).

Let d15 be the character in d1o that admits

2€4 €1 — €2 — €3 — €4 €2 + €3
o e ®

as a basis for the good roots.




The following table shows that we can realize all the relevant

W (Bs3)-types and all the relevant W (A;)-types using petite

K-types for 69

petite K-type

mult. of 415

repres. of W (B3 x Ay)

(1

(3 x 0) x triv

0

(3 x 0) x sign

(21 x 0) x triv

2 x 1) x triv

2

(
(
(
(
(

0

1
1
2
3
3
1

(
(1 x 2) x sign
(0 x 3) X triv




Because we can match all the relevant W (Bs x A;)-types,

there exists an inclusion of unitary duals:?®

XSO(3,4)><SL(2)(

X% (612,7) unitary triv,vg) unitary

Notice that there is a shifting of parameters: if y=(ny,ns, ns, ny),

then v9 = (n1 + n4, N1 — N4, N2 + N3, N2 — N3).

250(3,2) x SL(2) is the real split group with root system Bs x Aj.




If v=(n1,n2,n3,ny4) is the parameter for Fy, let vo=(n1, g, Nig, Ng)

be the corresponding parameter for B3 x Al.

The inner product of v with a basis for the good co-roots in Fj

should match the inner product of vy with the simple co-roots in
Bg X All

niy — N2 — N3 — N4
2

€1 — €2 — €3 — €4




example 3: og I

d¢ contains three 2-dimensional irreducible representations of M.
For each of them, the stabilizer of § is W (B4).

Let d¢ the irreducible component of d¢ that admits

2€9 €1 — €2 — €3 — €4 2€4
o @ )

as a basis for the good roots.

We would like to realize all the relevant W (Bj)-types using petite

K-types for d.




The following is a complete list of petite K-types for dg:

petite K-type

mult. of dg

repres. of W(By)

4 %0

31 x 0

1 x3

3 X1

0x4

0 x 31

The relevant W (By)-types are:

4x0 31x0 3x1

I x3 0x4.

We cannot match 2 x 2!!!




The relevant W (By)-type 2 x 2 is missing. So we cannot deduce an

inclusion of unitary duals.

We only get a weaker result:?

set of unitary set of unitary non-unitarity region

parameters parameters for (triv,SP(4))

for (9, G) for (triv, SP(4)) ruled out by 2 x 2

The region ruled out by 2 x 2 consists of all parameters of the form
Yo = (a+1/2,a—1/2,b, 1) with (a,b) in the triangle delimited by
the linesa=1/2, b=0and a + b = 3/2.

2Notice that the stabilizer of dg is of type B4 but we are taking Go = SP(4).
Indeed, g is genuine, so G must be the split group with co-roots of type Bj.




example 4: 03 I

03 contains three 1-dimensional irreducible representations of M.
For each of them, the stabilizer of § is W (C4).

Let 05 the irreducible component of d5 that admits

€1 — €2 — €3 — €4 €3 + €4
Qe [ ]

as a basis for the good roots.

Next, we look at the complete list of petite K-types for d3, and we
hope to realize all the relevant W (Cy)-types: 4 x 0 0 x 4
ax1 |1 x3| 2x2 31 x0.




petite K-type

mult. of I3

repres. of W (Cy)

(2

4 %0

4

0x4

31 x0

2

2 X 2

22 x 0

111 x 1

21 x 1

1

3 %X 1

0

211 x 0

(
(
(
(
(1
(
(
(
(

2

S B IS T TN e < T Y~ B NG = N I I SO e

11 x 11+ 1111 x 0

We cannot match 1 x 3!!!




The relevant W (Cy)-type 1 x 3 is missing. So we cannot deduce an

inclusion of unitary duals.

Just like before, we only obtain a weaker result:

set of unitary set of unitary non-unitarity region

parameters parameters for (triv,SP(4))

for (93, G) for (triv, SP(4)) ruled out by 1 x 3

The region ruled out by 1 x 3 is the line segment
Yo=3/2+¢t 1/24+t, —1/24+1t, —3/2+1)

with 1/2 < ¢ < 3/2.




work in progress I

Understand if these “extra regions” contain any unitarity point.




