Unitarity of non-spherical principal series

Alessandra Pantano

July 2005

Minimal Principal Series

- G: a real split semisimple Lie group
- θ : Cartan involution; $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$: Cartan decomposition of \mathfrak{g}
- \mathfrak{a} : maximal abelian subspace of \mathfrak{p} , $A = \exp_G(\mathfrak{a})$, $M = Z_K(\mathfrak{a})$
- $\Delta = \Delta(\mathfrak{g}, \mathfrak{a})$: the set of restricted roots
- (δ, V^{δ}) : an irreducible tempered unitary representation of M
- P = MAN: a minimal parabolic in G with Levi factor MA
- ν : a real character of A, strictly dominant for N
- $\Rightarrow X_P(\delta, \nu) = \operatorname{Ind}_P^G(\delta \otimes \nu)$ a minimal principal series for G

Langlands quotient representation

If \bar{P} is the opposite parabolic, there is an intertwining operator

$$A = A(\bar{P} : P : \delta : \nu) : X_P(\delta, \nu) \longrightarrow X_{\bar{P}}(\delta, \nu).$$

Define the Langlands quotient representation to be the closure of the image of this operator:

$$\bar{X}(\delta, \nu) = \overline{\text{Im}(A(\bar{P}: P: \delta: \nu))}.$$

 $\bar{X}(\delta,\nu)$ is the unique irreducible quotient of $X_P(\delta,\nu)$.

Unitarity of $\bar{X}_P(\delta, \nu)$

• $\bar{X}_P(\delta \otimes \nu)$ has a non-degenerate invariant Hermitian form if and only if there exists $\omega \in K$ satisfying

$$\omega P \omega^{-1} = \bar{P} \qquad \omega \cdot \delta \simeq \delta \qquad \qquad \omega \cdot \nu = -\nu.$$

• Every non-degenerate invariant Hermitian form on $\bar{X}_P(\delta \otimes \nu)$ is a real multiple of the form induced by the Hermitian operator

$$B = \delta(\omega) \circ R(\omega) \circ A(\bar{P} : P : \delta : \nu)$$

from $X_P(\delta \otimes \nu)$ to $X_P(\delta \otimes -\nu)$.

 $\bar{X}_P(\delta \otimes \nu)$ is unitary if and only if B is semidefinite

Computing the signature of B

This is a very hard problem. Two reductions are possible:

 1^{st} reduction: a K-type by K-type calculation

For all μ in the principal series, we get an operator

$$R_{\mu}(\omega, \nu) \colon \operatorname{Hom}_{K}(E_{\mu}, X_{P}(\delta \otimes \nu)) \to \operatorname{Hom}_{K}(E_{\mu}, X_{P}(\delta \otimes -\nu))$$

which, by Frobenius reciprocity and the minimality of P, becomes

$$R_{\mu}(\omega, \nu) \colon \operatorname{Hom}_{M}(E_{\mu} \mid_{M}, V^{\delta}) \to \operatorname{Hom}_{M}(E_{\mu} \mid_{M}, V^{\delta}).$$

Computing the signature of B

2nd reduction: a rank-one reduction

- Decompose ω into a product of simple reflections: $w = \prod_{i=1}^{l} s_{\alpha_i}$
- By Gindikin-Karpelevic, $R_{\mu}(\omega, \nu)$ decomposes accordingly:

$$R_{\mu}(\omega,\nu) = \prod_{i=1}^{l} R_{\mu}(s_{\alpha_i}, \gamma_i)$$

- A factor $R_{\mu}(s_{\alpha_i}, \gamma_i)$ is induced from the corresponding intertwining operator for the $SL(2, \mathbb{R})$ associated to α_i
- The intertwining operator for $SL(2,\mathbb{R})$ is known, so we get explicit formulas for the factors $R_{\mu}(s_{\alpha_i},\gamma_i)$

$SL(2,\mathbb{R})$: the spherical case

The intertwining operator $X_P(triv \otimes \gamma) \to X_P(triv \otimes -\gamma)$ acts by:

We can normalize the operator so that $c_0 = 1$ and

$$c_{2n} = \frac{\prod_{j=1}^{n} ((2j-1) - \langle \gamma, {}^{\vee}\alpha \rangle)}{\prod_{j=1}^{n} ((2j-1) + \langle \gamma, {}^{\vee}\alpha \rangle)} \qquad \forall n \ge 1$$

$SL(2,\mathbb{R})$: the non spherical case

The intertwining operator $X_P(sign \otimes \gamma) \to X_P(sign \otimes -\gamma)$ acts by:

We can normalize the operator so that $c_1 = 1$ and

$$c_{2n+1} = \frac{(2-\gamma)(4-\gamma)\cdots(2n-\gamma)}{(2+\gamma)(4+\gamma)\cdots(2n+\gamma)} \qquad \forall n \ge 1$$

G split: the spherical case

- The operator $R_{\mu}(\omega, \nu)$: $= (E_{\mu}^*)^M \to (E_{\mu}^*)^M$ decomposes in operators corresponding to simple reflections
- Every factor $R_{\mu}(s_{\alpha}, \gamma)$ is again an operator on $(E_{\mu}^{*})^{M}$
- If $\mu \mid_{K^{\alpha}} = \bigoplus_{j \in \mathbb{Z}} \phi_j$ is the decomposition of μ w.r.t. the SO(2)-subgroup K^{α} attached to α , then

$$(E_{\mu}^*)^M = \bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_M(\phi_{2n} + \phi_{-2n}, V^{triv})$$

is the decomposition of $(E_{\mu}^*)^M$ in MK^{α} -invariant subspaces

• $R_{\mu}(s_{\alpha}, \gamma)$ preserves this decomposition, and acts on $\operatorname{Hom}_{M}(\phi_{2n} + \phi_{-2n}, V^{triv})$ by the scalar c_{2n}

The operator $R_{\mu}(s_{\alpha}, \gamma)$, for δ trivial

 $R_{\mu}(s_{\alpha},\gamma)$ depends on the decomposition of μ w.r.t K^{α}

$R_{\mu}(s_{\alpha}, \gamma)$, for δ trivial and μ petite

- If μ is petite, $(E_{\mu}^*)^M = \operatorname{Hom}_M(\phi_0, V^{tr}) \oplus \operatorname{Hom}_M(\phi_{-2} + \phi_{+2}, V^{tr})$
- $(E_{\mu}^*)^M = \operatorname{Hom}_M(E_{\mu}, V^{tr})$ carries a representation Ψ_{μ} of W,

$$\operatorname{Hom}_{M}(\phi_{0}, V^{\delta}) \equiv (+1)$$
-eigenspace of $\Psi_{\mu}(s_{\alpha})$
 $\operatorname{Hom}_{M}(\phi_{-2} + \phi_{+2}, V^{\delta}) \equiv (-1)$ -eigenspace of $\Psi_{\mu}(s_{\alpha})$

• $R_{\mu}(s_{\alpha}, \gamma)$ acts by c_0 on the (+1)-eigenspace of $\Psi_{\mu}(s_{\alpha})$, and by c_2 on the (-1)-eigenspace of $\Psi_{\mu}(s_{\alpha})$. This gives:

$$R_{\mu}(s_{\alpha}, \gamma) = \left(\frac{c_0 + c_2}{2}\right) Id + \left(\frac{c_0 - c_2}{2}\right) \Psi_{\mu}(s_{\alpha})$$

$R_{\mu}(s_{\alpha}, \gamma)$, for δ trivial and μ petite

$$\operatorname{Hom}_{M}(\phi_{0}, F_{\delta}) \quad \operatorname{Hom}_{M}(\phi_{2} + \phi_{-2}, F_{\delta}) \quad \operatorname{Hom}_{M}(\phi_{4} + \phi_{-4}, F_{\delta})$$

$$\downarrow 1 \qquad \qquad \downarrow \frac{1 - \langle \gamma, \vee \alpha \rangle}{1 + \langle \gamma, \vee \alpha \rangle} \qquad c_{4} \qquad c_{6}$$

$$\downarrow \operatorname{Hom}_{M}(\phi_{0}, F_{\delta}) \quad \operatorname{Hom}_{M}(\phi_{2} + \phi_{-2}, F_{\delta}) \quad \operatorname{Hom}_{M}(\phi_{4} + \phi_{-4}, F_{\delta})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

$$R_{\mu}(s_{\alpha}, \gamma) = \begin{cases} +1 & \text{on the } (+1)\text{-eigenspace of } \Psi_{\mu}(s_{\alpha}) \\ \frac{1 - \langle \gamma, \check{\alpha} \rangle}{1 + \langle \gamma, \check{\alpha} \rangle} & \text{on the } (-1)\text{-eigenspace of } \Psi_{\mu}(s_{\alpha}) \end{cases}$$

Relevant W-types

- In the p-adic case, the spherical representation $\bar{X}(\nu)$ is unitary if and only if the operator $R_{\tau}(\omega,\nu)$ is positive semidefinite, for every representation τ of W
- Dan and Dan have determined a subset of W-representations (the **relevant set**) that detects unitarity:

 $\bar{X}(\nu)$ is unitary $\Leftrightarrow R_{\tau}(\omega,\nu)$ is pos. semidef. for all τ relevant

• If μ is petite and W acts on $(E_{\mu}^*)^M$ by τ , then

the real operator $R_{\mu}(\omega, \nu)$ = the p-adic operator $R_{\tau}(\omega, \nu)$

Relevant W-types

$$A_{n-1} \qquad (n-k,k), \ j \le n/2$$

$$B_n, C_n \qquad (n-j,j) \times (0), \ j \le n/2, \quad (n-k) \times (k), \ k=0...n$$

$$D_n \qquad (n-j,j) \times (0), \ j \le n/2, \quad (n-k) \times (k), \ k < n/2$$

$$(n/2) \times (n/2)^{\pm} \text{ if n is even}$$

$$F_4 \qquad 1_1, \ 2_3, \ 8_1, \ 4_2, \ 9_1,$$

$$E_6 \qquad 1_p, \ 6_p, \ 20_p, \ 30_p, \ 15_q,$$

$$E_7 \qquad 1_a, \ 7'_a, \ 27_a, \ 56'_a, \ 21'_b, \ 35_b, \ 105_b,$$

$$E_8 \qquad 1_x, \ 8_z, \ 35_x, \ 50_x, \ 84_x, \ 112_z, \ 400_z, \ 300_x, \ 210_x.$$

Relevant K-types

Barbasch has proved that for every G real and split, there is a set of petite K-types such that the $(E_{\mu}^*)^M$'s realize all the relevant W-representations (**relevant** K-**types**).

These relevant petite K-types provide **non-unitarity certificates** for spherical Langlands quotients:

 $\bar{X}(triv.\otimes\nu)$ is unitary only if $R_{\mu}(\omega,\nu)$ is positive semidefinite for every relevant K-type μ

For relevant K-types, the operator $R_{\mu}(\omega, \nu)$ can "easily" be constructed by means of Weil groups computations.

Classical groups

The spherical unitary dual for a **classical** split reductive group is independent of whether the field is real or p-adic. Therefore

 $\bar{X}(triv \otimes \nu)$ is unitary in the real case

 $\bar{X}(\nu)$ is unitary in the p-adic case

 $R_{\tau}(\omega,\nu)$ is positive semidefinite, for all relevant W-types τ

 $R_{\mu}(\omega,\nu)$ is positive semidefinite, for all relevant K-types μ

Spherical - Not Spherical

S: $R_{\mu}(\omega, \nu)$ is an endomorphism of $\operatorname{Hom}_{M}(E_{\mu}, V^{triv})$, and this space has a W-representation

N-S: $R_{\mu}(\omega, \nu)$ is an endomorphism of $\operatorname{Hom}_{M}(E_{\mu}, V^{\delta})$, and this space does not have a W-representation

S: Every factor $R_{\mu}(s_{\alpha}, \gamma)$ acts on $\operatorname{Hom}_{M}(E_{\mu}, V^{triv})$

N-S: $R_{\mu}(s_{\alpha}, \gamma)$ carries $\operatorname{Hom}_{M}(E_{\mu}, V^{\delta})$ into $\operatorname{Hom}_{M}(E_{\mu}, V^{s_{\alpha} \cdot \delta})$

S: The action of $R_{\mu}(s_{\alpha}, \gamma)$ is "easy"

N-S: the action of $R_{\mu}(s_{\alpha}, \gamma)$ is more complicated

The action of $R_{\mu}(s_{\alpha}, \gamma)$, for α good

If α is a good root, $R_{\mu}(s_{\alpha}, \gamma)$ behaves just like in the spherical case:

- $R_{\mu}(s_{\alpha}, \gamma)$ is an endomorphism of $\operatorname{Hom}_{M}(E_{\mu} | M, V^{\delta})$
- $\operatorname{Hom}_M(E_{\mu} \mid_M, V^{\delta}) = \bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_M(\phi_{2n} + \phi_{-2n}, V^{\delta})$
- $R_{\mu}(s_{\alpha}, \gamma)$ acts on $\operatorname{Hom}_{M}(\phi_{0}, V^{\delta})$ by 1. For all $n \geq 1$, it acts on $\operatorname{Hom}_{M}(\phi_{2n} + \phi_{-2n}, V^{\delta})$ by the scalar:

$$c_{2n} = \frac{\prod_{j=1}^{n} ((2j-1) - \langle \gamma, {}^{\vee}\alpha \rangle)}{\prod_{j=1}^{n} ((2j-1) + \langle \gamma, {}^{\vee}\alpha \rangle)}$$

The action of $R_{\mu}(s_{\alpha}, \gamma)$, for α good

$$\operatorname{Hom}_{M}(\phi_{0}, V^{\delta}) \quad \operatorname{Hom}_{M}(\phi_{2} + \phi_{-2}, V^{\delta}) \quad \operatorname{Hom}(\phi_{4} + \phi_{-4}, V^{\delta})$$

$$R_{\mu}(s_{\alpha}, \gamma):$$

$$c_{0} = 1$$

$$c_{2} = \frac{1 - \langle \gamma, \check{\alpha} \rangle}{1 + \langle \gamma, \check{\alpha} \rangle}$$

$$c_{4}$$

$$\operatorname{Hom}_M(\phi_0, V^{\delta}) \quad \operatorname{Hom}_M(\phi_2 + \phi_{-2}, V^{\delta}) \quad \operatorname{Hom}_M(\phi_4 + \phi_{-4}, V^{\delta})$$

When μ is petite (of level ≤ 3):

$$R_{\mu}(s_{\alpha}, \gamma) = \begin{cases} +1 & \text{on the (+1)-eigenspace of } \Psi_{\mu}(s_{\alpha}) \\ \frac{1 - \langle \gamma, \check{\alpha} \rangle}{1 + \langle \gamma, \check{\alpha} \rangle} & \text{on the (-1)-eigenspace of } \Psi_{\mu}(s_{\alpha}) \end{cases}$$

 Ψ_{μ} is the representation of W_{δ}^{0} on $\operatorname{Hom}_{M}(E_{\mu}, V^{\delta})$

The action of $R_{\mu}(s_{\alpha}, \gamma)$, for α bad

• The reflection s_{α} may fail to stabilize δ , so

$$R_{\mu}(s_{\alpha}, \gamma) \colon \operatorname{Hom}_{M}(E_{\mu}, V^{\delta}) \to \operatorname{Hom}_{M}(E_{\mu}, V^{s_{\alpha} \cdot \delta})$$

may fail to be an endomorphism

• The operator $R_{\mu}(s_{\alpha}, \gamma)$ carries

$$\operatorname{Hom}_{M}(\phi_{2n+1} + \phi_{-2n-1}, V^{\delta}) \to \operatorname{Hom}_{M}(\phi_{2n+1} + \phi_{-2n-1}, V^{s_{\alpha} \cdot \delta})$$

• For T in $\operatorname{Hom}_M(\phi_{2n+1} + \phi_{-2n-1}, V^{\delta})$, $R_{\mu}(s_{\alpha}, \gamma)T$ is the map

$$\phi_{2n+1} + \phi_{-2n-1} \to V^{s_{\alpha} \cdot \delta}, \ (v_+ + v_-) \mapsto c_{2n+1} T(v_+ - v_-)$$

The operator au_{μ}^{α}

For every K-type μ and every root α , we have an operator

$$\tau_{\mu}^{\alpha} \colon \operatorname{Hom}_{M}\left(E_{\mu}, V^{\delta}\right) \to \operatorname{Hom}_{M}\left(E_{\mu}, V^{s_{\alpha} \cdot \delta}\right), S \mapsto S \circ \mu(\sigma_{\alpha}^{-1})$$

For any integer $k \geq 0$, set $U_k = \operatorname{Hom}_M(\phi_k + \phi_{-k}, V^{\delta})$. Then

- If α is good, $\operatorname{Hom}_M(E_{\mu}, V^{\delta}) = \operatorname{Hom}_M(E_{\mu}, V^{s_{\alpha} \cdot \delta}) = \bigoplus_{n \in \mathbb{N}} U_{2n}$. The operator τ_{μ}^{α} acts on U_{2n} by $(-1)^n$
- If α is bad, $\operatorname{Hom}_M(E_\mu, V^\delta) = \bigoplus_{n \in \mathbb{N}} U_{2n+1}$. The image of an element T in U_{2n+1} , is the map

$$\phi_{2n+1} + \phi_{-2n-1} \to V^{s_{\alpha} \cdot \delta}, \ (v_+ + v_-) \mapsto (-1)^{n+1} i T(v_+ - v_-)$$

The action of $R_{\mu}(s_{\alpha}, \gamma)$, for α bad

$$\operatorname{Hom}_{M}(\phi_{1} + \phi_{-1}, V^{\delta}) \quad \operatorname{Hom}_{M}(\phi_{3} + \phi_{-3}, V^{\delta}) \quad \operatorname{Hom}(\phi_{5} + \phi_{-5}, V^{\delta})$$

 $\operatorname{Hom}_{M}(\phi_{1}+\phi_{-1},V^{s_{\alpha}\cdot\delta})\operatorname{Hom}_{M}(\phi_{3}+\phi_{-3},V^{s_{\alpha}\cdot\delta})\operatorname{Hom}_{M}(\phi_{5}+\phi_{-5},V^{s_{\alpha}\cdot\delta})$

If μ is petite of level ≤ 2 , then $R_{\mu}(s_{\alpha}, \gamma) = ic_1 \tau_{\mu}^{\alpha}$

A very special case

Assume that there is a minimal decomposition of ω in simple roots that involves **only good roots**.

If μ is petite, every factor $R_{\mu}(s_{\alpha}, \gamma)$ behaves like in the spherical case, and depends only on the representation ψ_{μ} of the Weyl group of the good co-roots on $\text{Hom}_{M}(\delta, \nu)$.

The full intertwining operator $R_{\mu}(\omega, \nu)$ can be constructed in terms of ψ_{μ} , and coincides with the p-adic operator $R_{\psi_{\mu}}$.

This gives a way to compare the non-spherical principal series for our real split group with a spherical principal series for the p-adic split group associated to the root system of the good co-roots.

An example

Let G be the double cover of the real split E_8 , and let δ be the genuine representation. Because $W_{\delta}^0 = W$, we are in the "very special case". A direct computation shows that not every relevant $W(E_8)$ -type can be realized as the representation of W on $\operatorname{Hom}_M(E_\mu, V^{\delta})$. Therefore

it **might** happen that the non-spherical genuine principal series $X(\delta \otimes \nu)$ for the real E_8 is unitary, even if the spherical principal series $X(\nu)$ for the p-adic E_8 is not unitary.

The unitarity of $X(\nu)$ could be ruled out exactly by the W-type that we are unable to match.

Another kind of matching...

Most often, a minimal decomposition of ω involves both good and bad roots. We would still like to construct the intertwining operator in terms of the representation ψ_{μ} of W_{δ}^{0} on $\operatorname{Hom}_{M}(E_{\mu}, V^{\delta})$. When is this possible?

Claim: If w belongs to W_{δ}^0 and μ is a petite K-type of level at most two (\diamondsuit) , then the intertwining operator $R_{\mu}(\omega, \nu)$ for G coincides with the p-adic operator $R_{\psi_{\mu}}$ for the split group associated to the root system of the good co-roots.

The hypothesis \diamondsuit can be weakened: the characters ± 3 of K^{α} are allowed for the simple good roots α that appear in a minimal decomposition of ω as an element of W_{δ}^{0} .

Conclusions

Suppose that

- The split group corresponding to W^0_{δ} is a classical group
- Every relevant W_0^{δ} type appears in some $\operatorname{Hom}_M(E_{\mu}, V^{\delta})$
- The matching of the intertwining operators is possible (in particular, ω is in W_{δ}^{0}).

Then you obtain non-unitarity certificates for $\bar{X}_P(\delta, \nu)$.

In the cases of (E_8, δ_{135}) , (E_6, δ_{27}) , (E_6, δ_{36}) , (F_4, δ_3) , (F_4, δ_{12}) , there is a complete matching of W^0_{δ} -types, w_0 always belongs to W^0_{δ} and the good roots determine a classical split group, so we expect to be able to get non-unitarity certificates.