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Minimal Principal Series'

GG: a real split semisimple Lie group

f: Cartan involution; g = € @ p: Cartan decomposition of g
a: maximal abelian subspace of p, A = exps(a), M = Zk(a)
A = A(g, a): the set of restricted roots

(6, V‘S): an irreducible tempered unitary representation of M
P =MAN: a minimal parabolic in G with Levi factor M A

v: a real character of A, strictly dominant for N

Xp(6,v) =Ind% (6 ® v) a minimal principal series for G




Langlands quotient representation'

If P is the opposite parabolic, there is an intertwining operator
A=AP:P:5:v): Xp(6,v) — Xp(6,v).

Define the Langlands quotient representation to be the
closure of the image of this operator:

X(6,v) =Im(A(P: P:§:v)).

X (8,v) is the unique irreducible quotient of Xp(d,v).




Unitarity of Xp(0,v)

¢ Xp(6 ®v) has a non-degenerate invariant Hermitian
form if and only if there exists w € K satisfying

wPw =P N e U= —1.

e Every non-degenerate invariant Hermitian form on Xp(d ® v) is

a real multiple of the form induced by the Hermitian operator
B=0w)oRW)oAP:P:6:v)

from Xp(d ®@v) to Xp(d ® —v).

Xp(6®v) is unitary if and only if B is semidefinite




Computing the signature of B I

This is a very hard problem. Two reductions are possible:

15 reduction: a K-type by K-type calculation

For all i in the principal series, we get an operator
R, (w, v): Homg(E,, Xp(d ®v)) — Homg(E,, Xp(d ® —v))

which, by Frobenius reciprocity and the minimality of PP, becomes

R, (w, v): Homp(E, |a, V) — Homp (B, |ar, VO).




Computing the signature of B I

27 reduction: a rank-one reduction

. : : l
Decompose w into a product of simple reflections: w = [[;_; sa;

By Gindikin-Karpelevic, R, (w, ) decomposes accordingly:

[
R, (w,v) = H R, (S 7i)

1=1

A factor R, (5q,,7i) is induced from the corresponding
intertwining operator for the SL(2,R) associated to a;

The intertwining operator for SL(2,R) is known, so we get

explicit formulas for the factors R, (sq,;, Vi)




SL(2,R): the spherical case

The intertwining operator X p(triv ® v) — Xp(triv ® —v) acts by:
P2 P+2

We can normalize the operator so that cg = 1 and

(27— 1)~ (3, Va)
RS (T VA B




SL(2,R): the non spherical case

The intertwining operator X p(sign ® v) — Xp(sign ® —v) acts by:
¢—1 P+1

l —c3 l — ﬁ +or

O—1 O+1

We can normalize the operator so that ¢; = 1 and

c :(2_’}/)(4—7)...(2,”_7)
T 24 )A+9) - (2n +7)




(G split: the spherical case I

The operator R, (w,v): = (E;)M — (E;)M decomposes in
operators corresponding to simple reflections

Every factor R, (sq4,7) is again an operator on (E%)"

If p|ke= D;cz @5 is the decomposition of p w.r.t. the
SO(2)-subgroup K¢ attached to «, then

(EIZ)M — @ HomM(ngn + gb—2n7 Vtm'v)
neN

is the decomposition of (EZ)M in M K“-invariant subspaces

R, (sa,7) preserves this decomposition, and acts on
Hom s (pay, + ¢—_oy, V™) by the scalar ¢y,




The operator R,(s,,7), for ¢ trivial

Homps (¢o, V™)  Homps(d2 + ¢—2, V") Hom(¢a + ¢—a, V")

Ru(sa, ) : “1 “CQ “04

® @ @
Hom s (¢, V") Homps(¢2 + ¢—2, V")  Homps(¢pa + ¢4, V')

R, (S4,7) depends on the decomposition of y w.r.t K¢




R, (Sa,7), for § trivial and u petite

o If 11 is petite,
(EZ)M = Hom s (¢o, V*") ® Homps(¢p_o + ¢1o, V7

o (E)™ =Homp(E,, V') carries a representation W, of W,

Homy; (¢, V) = (+1)-eigenspace of ¥, (s,)
Homps(¢_2 + ¢yo, V) = (—1)-cigenspace of ¥, (s,)

o R, (s4,7) acts by cog on the (41)-eigenspace of ¥, (s, ), and by
cy on the (—1)-eigenspace of ¥, (s,). This gives:

co + ¢ Cco — C
Ry(son) = (252 ) 1+ (252 ) w50




R,(Sa,7), for ¢ trivial and p petite

Hompns(¢o, F5)  Homps(¢2 + ¢p—2, Fs) %M@%/qbzl,ﬂs)
® @ @ @

1_<'7’ \/a>
1+(v, Vo)

o @
HomM(gbo,F(;) HomM((bQ —|—¢_2,F5) Hom

f i
+1 eigenspaceof ¥, (sqa) —1eigenspaceof ¥, (sqa)

+1 on the (+1)-eigenspace of ¥, (s,)

1_<77 6‘>

T & on the (—1)-eigenspace of ¥, (s,)




Relevant W-types I

e In the p-adic case, the spherical representation X (v) is unitary
if and only if the operator R.(w,v) is positive semidefinite, for
every representation 7 of W

e Dan and Dan have determined a subset of W-representations
(the relevant set) that detects unitarity:

X (v) is unitary < R, (w, V) is pos. semidef. for all 7 relevant

o If 4u is petite and W acts on (E)" by 7, then

the real operator R,(w,v) = the p-adic operator R,(w,v)




Relevant W-types I

n-k,

(n-k, k), j < n/2

(n-j,7)x(0), j <n/2, (n-k)x(k), k=0...n
(n-j, j) %

(

(0), j <n/2, (n-k)x(k), k <n/2
n/2)x(n/2)* if n is even

11, 23, 81, 42, 91,

1,, 6,, 20,, 30,, 15,,

1o, 7%, 274, 56, 21, 35;, 105,

1,. 8,. 35, 50,, 84, 112., 400,, 300,, 210,.




Relevant K-types I

Barbasch has proved that for every G real and split, there is a set
of petite K-types such that the (E%)"’s realize all the relevant
W-representations (relevant K-types).

These relevant petite K-types provide non-unitarity certificates

for spherical Langlands quotients:

X (triv.®v) is unitary only if R,(w,v) is positive

semidefinite for every relevant K-type u

For relevant K -types, the operator R, (w,v) can “easily” be

constructed by means of Weil groups computations.




Classical groups I

The spherical unitary dual for a classical split reductive group is

independent of whether the field is real or p-adic. Therefore

X (triv ® v) is unitary in the real case
X (v) is unitary in the p-adic case

0

R (w,v) is positive semidefinite, for all relevant W-types 7

0

R, (w,v) is positive semidefinite, for all relevant K-types




Spherical - Not Spherical'

: R, (w,v) is an endomorphism of Hom, (E,, V™), and this

space has a W -representation

. R, (w,v) is an endomorphism of Hom;(E,, V?), and this space

does not have a W-representation

. Every factor R,(sa,7) acts on Homyy (B, VI7iv)

. R, (8a,7) carries Homys(E,,, V?°) into Homy, (E,,, V=)

: The action of RM(SQ, v) is “easy”

: the action of R, (s4,7) is more complicated




The action of R,(s,,7), for a good

If a is a good root, R, (sS4, 77) behaves just like in the spherical case:

e R,(54,7) is an endomorphism of Hom, (E,, |u, V°)

o Homy (E, |ar, VO) = @, o Homas (dan + ¢—_an, VO)

e R,(54,7) acts on Homy;(¢g, V°) by 1. For all n > 1, it acts
on Hom y/(¢an + ¢—_2pn, V?°) by the scalar:

(27— 1) = (. Va))
0, (25— 1)+ (1, Va))

Con




The action of R,(s,.,7), for a good

Hom s (¢o,VS)  Homps(¢o + ¢_2,V?®)  Hom(da + ¢4, V9)

® o
Hom s (¢0,V®)  Homps(p2 + ¢—2,V?)  Homps(¢pa + d—a,V?)

When © is getite (of level < 3):
<

+1 on the (+1)-eigenspace of ¥, (sq)
RM(SOH 7): -

1_<'7’ d>
1+(v, &)

U, is the representation of W3 on Homu/(E,,, V5)

on the (—1)-eigenspace of ¥, (sq)




The action of R,(s,,7), for a bad

e The reflection s, may fail to stabilize o, so
R, (Sa, v): Homp (E,, V‘;) — Homy, (E,, VSO‘"S)

may fail to be an endomorphism

e The operator R, (s, ) carries

Homas (d2n41 + ¢—2n—1, V°) — Homps (d2ni1 + ¢—2n—1, V)

e For T in Hom s (¢oni1 + ¢—on—1, V?°), R, (Sa, v)T is the map

Pont1+ d—an-1 — V>, (vy + v_) = conp1 T(vg — v_)




The operator 7

For every K-type p and every root o, we have an operator

7, Homy, (E/u V(S) — Hom (Ew VSa'5) , S — Sopu(o

For any integer k > 0, set U, = Hom /(¢ + ¢—r, V°). Then

o If o is good, Homy(E,, V°)=Homu (E,, V)=, .y Uzn.
The operator 7 acts on Uz, by (—1)"

o If o is bad, Homp (E,, V°) = @,y U2n+1. The image of an
element 7" in Usp41, is the map

Gont1 + G—on—1 — V>0, (vp + vo) = (=)™ T(vg — v_)




The action of R,(s,.,7), for a bad

Hom s (¢1 + ¢—1,V?)  Homps(¢s + ¢—3, Vo)




A very special case'

Assume that there is a minimal decomposition of w in simple roots

that involves only good roots.

If 11 is petite, every factor R, (sa,7) behaves like in the spherical
case, and depends only on the representation v, of the Weyl group
of the good co-roots on Hom (4, v).

The full intertwining operator R,,(w, ) can be constructed in terms

of ¢, and coincides with the p-adic operator Ry, .

This gives a way to compare the non-spherical principal series for
our real split group with a spherical principal series for the p-adic

split group associated to the root system of the good co-roots.




An example I

Let G be the double cover of the real split Eg, and let 6 be the
genuine representation. Because W(Q = W, we are in the “very

special case”. A direct computation shows that not every relevant

W (Eg)-type can be realized as the representation of W on
Hom (E,,, V?°). Therefore

1t maght happen that the non-spherical genuine principal series
X (0 ®v) for the real Eg is unitary, even if the spherical principal
series X (v) for the p-adic Eg is not unitary.

The unitarity of X (v) could be ruled out exactly by the W-type
that we are unable to match.




Another kind of matching. .. I

Most often, a minimal decomposition of w involves both good and
bad roots. We would still like to construct the intertwining

operator in terms of the representation v, of W(? on
Hom s (E,,V?°). When is this possible?

Claim: If w belongs to W3 and p is a petite K-type of level at
most two (), then the intertwining operator R, (w,v) for G
coincides with the p-adic operator Ry, for the split group associated

to the root system of the good co-roots.

The hypothesis <> can be weakened: the characters £3 of K¢ are
allowed for the simple good roots « that appear in a minimal

decomposition of w as an element of W(?.




Conclusions '

Suppose that
e The split group corresponding to W is a classical group
e Livery relevant Wg type appears in some Hom,(E,,, V‘S)

e The matching of the intertwining operators is possible (in

particular, w is in WY).
Then you obtain non-unitarity certificates for Xp (4, v).

In the cases of (E87 5135)7 (E67 527)7 (E67 536)7 (F47 53)7 (F47 512)7
there is a complete matching of W{-types, wy always belongs to
W(? and the good roots determine a classical split group, so we

expect to be able to get non-unitarity certificates.




