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Motivation

Unitary Dual Problem: Classify the unitary irreps of a group
abelian group: Pontrjagin
compact, connected Lie group: Weyl, 1920s

locally compact group—eg. reductive Lie group: open except for
some special cases

study a broader family of representations: those which admit an

invariant Hermitian form

real reductive Lie group: equivalent to classifying the irreducible
Harish-Chandra modules (admissible, finitely-generated

(g, K)-modules) which admit a positive-definite invariant

Hermitian form

Zuckerman 1978: construct all admissible (g, K)-modules by
cohomological induction




GG - real reductive Lie group

K - a maximal compact subgroup of G

go, Lo corresponding Lie algebras and g, £ their complexifications
q = [ & u parabolic subalgebra

f - Cartan involution corresponding to K

begin with an (I, L N K)-module V where L is a Levi subgroup of G
and [ its complexified Lie algebra

Step 1: extend to a rep of ¢ = [ u by allowing u to act trivially,
then apply induction functor

. JLNK
ind® 7150 (V) = U(g) @u(q) V

Step 2: apply a Zuckerman functor IV = j** derived functor of the
left exact covariant functor I' which takes the K-finite part of a

representation




. 1(g,LNK)
° md(ﬁ,LmK)

interest in highest weight modules

(V) is a generalized Verma module, hence our

Strategy: relate the signature of invariant Hermitian form on V' to

signature of cohomologically induced module I'/ indgﬁ égg (V)

1984, Vogan: Suppose q is #-stable. For an irreducible,
unitarizable ([, L N K)-module V' with infinitesimal character
A e b if

Re(a, A — p(u)) >0 Va € A(u,b)

then I'"(Homg4(U(g), V ® A*Pu)) is also unitarizable, where
m = dimu N &.
(Fact: prog(V") := Homq(U(g), V") ~ (indfV)".)

1984, Wallach: more elementary proof of same result by
computing the signature of the Shapovalov form on generalized
Verma modules (invariant Hermitian form on the module obtained
in Step 1 of cohomological induction)




e Potentially useful for unitary dual problem: signature of
Shapovalov form on a generalized Verma module, when it exists,

with no restrictions on value of infinitesimal character

e Today: irreducible Verma modules, irreducible highest weight

modules of regular infinitesimal character

Invariant Hermitian Forms

Definition: Invariant Hermitian form (-,-) on V:
For all v,w e V

e rep of G: (gv,w) = <v,g_1’w> for all g € G

e g-module: (Xv,w) + <v,)_(w> = 0 for every X € g, where X
denotes the complex conjugate of X with respect to the real

form g

e sesquilinear

When does a Verma module admit an invariant Hermitian form?




Theorem: An irreducible representation (7, V') admits a
non-degenerate invariant Hermitian form if and only if it is

isomorphic to a subrepresentation of its Hermitian dual (7", V?).

Let b = h + n be a Borel subalgebra of g and A1 (g, ) the

corresponding system of positive roots.
M(X) = ind}(Cy) so M(\)" = pro%(@ﬁ) = Homj(U(g),C_5)
We see that M ()\) embeds into M (\)" if A = —\ and

At(g,h) = —AT(g,h). When does this happen?

For i € b*, define:  (Op)(H) = (0= H)  (@)(H) = p(H)
Then: 9. = 9o Joa = 9a
Theorem: If b is f-stable and maximally compact, A is imaginary,

and OAT(g,h) = A*(g,h), then M()\) admits a non-degenerate

invariant Hermitian form.




e by h-invariance, the A\ — y weight space is orthogonal to the A — v

weight space if v # — [
e cach weight space is finite dimensional, so it makes sense to talk
about signatures and the determininants
Constructing the form:
For X € g, let X* = —X and extend X — X* to an involutive
anti-automorphism of U(g) by 1* =1 and (zy)* = y*z*.

We have the decomposition U(g) = U(h) & (U(g)n + n°PU(g)).
Let p be the projection of U(g) onto U(h) under this direct sum.

e For z,y € U(g), by invariance, (xvy,yvx), = (Y*Tvr, V), -

o ((U(g)n+n°PU(g))vx,vr) ={0}.

o (zvx,yva)y = Py T)vx, UA)\ = APy T)) (Ux,VA) 5

e See that an invariant Hermitian form on a Verma module is unique

up to a real scalar. When (vy,vy), = 1: Shapovalov form




Theorem: (Shapovalov determinant formula) The determinant of
the Shapovalov form on the A — y weight space is

IT Tl +paY)—n)?"e
acAT(g,h) n=1

up to multiplication by a scalar, where P denotes Kostant’s

partition function. (Assumption: b is compact.)
radical of Shapovalov form = unique maximal submodule of M ()
form non-degenerate precisely for the irreducible Verma modules

according to Shapovalov determinant formula, M () is reducible on

the affine hyperplanes H, ,, := {A\+ p| (A + p, ) = n} where « is

a positive root and n is a positive integer

in any connected set of purely imaginary A\ avoiding these
reducibility hyperplanes, as the Shapovalov form never becomes
degenerate, the signature corresponding to fixed p remains constant




Definition: The largest of such regions, which we name the
Wallach region, is the intersection of the negative open half

spaces

(ﬂ Ha,1> (Hz,

acll

with ih§, where & = the highest coroot, IT = simple roots
corresponding to A™, and Hy = {X + p[(A + p, BY) < n}.

Definition: If the signature of the Shapovalov form on M (\)x_, is
(p(1),q(w)), the signature character of (-,-), is

chsM(A) = Y (p(n) —q(p)) e

peEAT

Pick A\, & so that A + t£ stays in the Wallach region for ¢ > 0. An
asymptotic argument (degree of ¢ on the diagonal > degree off the
diagonal) leads to:




Theorem: (Wallach) The signature character of M(\) for A + p in
the Wallach region is

eA

H (1 — e_o‘> H (1 + e_o‘) .

a€A+(p,t) aEA+F(8,1)

chsM(\) =

Goal: be able to find the signature everywhere.

Idea: determine how the signature changes as you cross a
reducibility hyperplane. Combine this with induction.

e take A s.t. A+ p lies in exactly one reducibility hyperplane H, ,

e for reg § and non-zero ¢ in a nbd of 0, (-, "), is non-degenerate

e (-,-), has radical isom to the irreducible Verma module M (A — na)

e therefore signature must change by plus or minus the

signature of (-, -) across H, .

A—no

This can be made rigorous by using the Jantzen filtration.




e the H, ,’s where a is a root, n an integer, partition h* into alcoves
Definition: For an alcove A, 3 constants cﬁ‘ for p € A such that
A . A _N—p
R*(\) = Z c, €
pEAT
is the signature character of (:,-), when X\ + p lies in the alcove A.

Our description of how signatures change as you cross a reducibility
hyerplane may be expressed:

Lemma 1: If A, A’ are adjacent alcoves separated by H, ,

then  RA(\) = R (\) + 2¢(A, A)RA™™(\ — na)

where (A, A’) is zero if H, , is not a reducibility hyperplane and
plus or minus one otherwise.

e use R()\) to denote common signature character for alcoves in

Wallach region




We use the affine Weyl group, whose action on §* partitions h* into
precisely the alcoves with walls H,, , as described above.

Definition The fundamental alcove is

Ag={A+p|(A+p,a’)<0 VaeIl, A+pa’)>-—-1}.

reflections through walls of Ay generate the affine Weyl group, W, :
reflections s, o for each simple root o and sz _; generate W,

omit sz _; —, generate the Weyl group W as a subgroup of W,

these generators compatible with reflection through walls of the
fundamental Weyl chamber €, which we choose to contain Ay:

Co = ﬂ H;,O'

acll




Definition  We will define two maps * and - from the affine Weyl
group to the Weyl group as follows:

e - comes from structure of W, as semidirect product of
translation by the root lattice and the Weyl group: w = s if

w = ts with t = translation by an element of A,., s € W

e We let w be such that wAg lies in the Weyl chamber w,.
e - is a group homomorphism

e - is not a group homomorphism

® Son = Sa, and Sq 0Sa.nlt = U — NQ




Observe that we can rewrite Lemma 1 as

RwAO()\) = Rw/AO()\) + 2e(wAy, w’AO)R‘S“’OSa’"wAO(Sa,osa,n)\)
Rw/AO()\) + 2e(w Ao, w’AO)me/AO(Sa,nsa,n)\). (1)

For w in the affine Weyl group, let wAdy = Cy = C; 3 --- 25 Cy = WA,
be a (not necessarily reduced) path from wAqg to wAgy. Applying (1), ¢

times, we obtain

¢
RwAO <)\> L R@Ao()\) + Zg(Cj—th)QRr_jCj (ﬁ’l“])\>

g=1

14
R(A)+2) &(Cj_1,C;)RT% (T5m; ).
j=1

Observe that a path from 7;C; to 7;C) is

o~ TiTiT TiTj4+2T5 TiTeTy
TjCj — TjCj+1 —_— ot ?“ng.




Applying induction on path length, we arrive at the following:

Theorem 2: For w in the affine Weyl group, let
wAhAg =Cop = C1 3 - 55 Cy = wAg be a (not necessarily reduced)

path from wAgy to wAy.
R%40()\) equals

E S| priq T, WA
8(5)2' |Rr 17T WO (7”2‘17“7;2 T T Vi 1 'Til)\>
S={i1 < <ip}C{1,....0}

— Z E(S)2|S|R(T’ilri2 T i T "'ri1>‘>

S={i1< - <ir}C{1,....,£}
where £(f)) = 1 and

e(S) =e(Ci;-1,Ci,)e(Ti; Cig 1,75, Ciy) - €(Tiy - Tip_Cip—1,Tiy - Tip_, Cip)-

Calculating e: difficult.




Calculating ¢ I

The strategy for computing ¢ is as follows:

e We show that for a fixed hyperplane H, ,, the value of ¢ for

crossing from HF, to HZ, depends only on the Weyl chamber to

which the point of crossing belongs.

We consider rank 2 root systems of types As and By, generated by
simple roots a7 and as, and calculate the values for € by
calculating changes that occur at the Weyl chamber walls. Our
proofs do not depend on simplicity of the «;.

For an arbitrary positive root v in a generic irreducible root system
which is not type G2, we develop a formula for ¢ inductively by
replacing the a; from the previous step with appropriate roots.
Key in the induction is the independence of our rank 2 arguments

from the simplicity of the «;.




Let’s begin with something simple: calculate € for a simple.

Lemma 2: Let 0, be —1 if o is noncompact, and 1 if it is compact.

If « is simple and n is positive and if H, ,, separates wAy and w’ Ay
with wAy C HY , and w'Ag C HZ,,, then e(wAg,w'Ag) = &7,.

7n,

Proof: Choose X, € go, Yo € §_a, and H, = [X,,Y,], a standard
triple so that u(H,) = (u, )V € h*. We may arrange so that

~Y, = 60 Xa.

The A\ — na weight space of M () is one-dimensional and spanned
by the vector Y 'vy. We know that

(Yoon, Yooa)y, = do(va, XaYaua),

= don!{va, Ho(Ho — 1)

from sly theory. We conclude that

e(wAg,w' Ag) = 7.




Dependence on Weyl Chambers

Proposition 1:  Suppose « is a positive root and n € Z* and
suppose H, , separates adjacent alcoves wAy and w’ Ay, with
wAy C Hf,, and w'Ag C H,,. The value of e(w,w’) depends only

a,m
~/

on H, , and on w(=w’).

We begin by refining Theorem 2: if we take an arbitrary Cy, the

formula becomes

RvA0()) = > (D)2 RT3 T 0t (7 Ty, 1 A).
I={i1 < <ip}C{1,....4}

If we choose in particular C, = Cj, we have

RCO ()\) = Z €<[>2|I|Rm1---rikCO (7“2'1 R P PR )\) . (2)

I={i;<---<ip}
cq{1,...,¢}




We begin by proving the proposition in the special case where

wAg = C; and w'Ag = C; 11 as described in the following figure:
C={Cy....C5)

Figure 1: Type A,




Lemma 3: Let C = {C;};—0...¢—1 be a set of alcoves that lie in the
interior of some Weyl chamber and suppose the reflections
{r;}i=1,.. x preserve C. If w,v € W, are generated by the r; then

w_lw = U_lv < W = .

Proof: =-: By simple transitivity of the action of ¥, on the alcoves,

wlw=1v"1v < w twC =7 twC for any alcove C. Choose in

particular C = C;. The alcoves w lwC; and v~ 'vC; belong to the

same Weyl chamber as they are the same alcove. As the r;’s
preserve C which lies in the interior of some Weyl chamber, wC;
and vC; belong to the same Weyl chamber. Thus w™! =771,

whence w = v. The other direction is trivial.

Note: C in the figure satisfies the conditions of Lemma 3.




To prove the proposition for the figure, we need to show that
€(C7;, Ci_|_1) + E(OrH_g, Cz'_|_4) = 0, (C@ = Co)
For I = {i; < --- <y}, we define wy =r;, 7r;,_, ---71. We rewrite (2)
as
S 2R (wrtwd) = 0 (3)
DAIC{1,...,4}

Using Lemma 3 and the partial ordering on A, we obtain

> 2l =0

DAIC{1 L}
wr twr=p

for every u € A.

Suppose i = ma;q. The subsets I of length less than 3 for which

wr twr = p are I = {1},{4}. By considering equation (4) modulo 8,
we obtain £(Cy, C1) + e(C3,Cy) = 0 which gives the desired result for
Hy, m. The same proof can be used for the other hyperplanes and also
for type DBs.




1 r

rs
Ha,m Hﬁ,n Ha—|—2ﬁ,m—i—n

Generalization: C = {alcoves containing pq in their closures}.

Conditions of Lemma 3 satisfied, argue as before.




Sa1SasSay

(o




Calculating ¢ for Type A,

e know how to calculate ¢ for hyperplanes corresponding to simple
roots, so we know how to calculate € in the Weyl chambers
adjacent to the fundamental Weyl chamber

e again, changes along a closed path should sum to zero

e so previous diagram, where C overlaps with two Weyl chambers,
allows you to relate values of € in one chamber to values in an
adjacent chamber

Weyl chamber walls in C | Equations

Heuq 0 e(C2,C3) 4+ e(C5,C6) =0

e(C1,C2) +e(Cyq,Cs) + 2e(C2,C3)e(r3Cy,73C5) =0
Heay 0 e(Cop,C1)+e(C3,C4) =0

e(C1,C2) 4+ e(Cq,C5) + 2¢(Cp,C1)e(r:C1,71C2) =0
Hylfag,0 e(Cp,C1)4+e(C3,C4) =0

e(C2,C3) 4+ e(C5,Co) =0




Final Formula for ¢

Notation: e(Hy n,s) = e(A, A") where A C H;CN, A'CH y, Aand A’
are adjacent, and A C s€.

Using induction on height:

Theorem 3: Let v be a positive root, and let v =s;, -+ 55, _, @, be
such that ht(s;. ---s;,_,a;, ) decreasesas j increases. Let
w~ = S;, - 8;,. If v hyperplanes are positive on s€,, then

g(H%N’ 8) — (_1)N#{noncompact aij:|aij 1>~}

x (= )#{%A(w;l):IBI:I’YI,B#% and B,sgv€A(s™ 1)}

X (—1)#BEAWIIBI#| and . —spsy BEA(sTH)]}

Extending results so that we know how to compute signature characters

for non-compact Cartan subalgebras: use formulas for singular vectors.




Irreducible Highest Weight Modules

e the Shapovalov form on M (\) descends to an invariant

Hermitian form on the irreducible highest weight module L(\)

Let A be antidominant, regular, and x € WW,. The Jantzen filtration
of M(z-X) (x- A=xz(A+p) — p) is

M- A =M -N">M@- N> - > M- )N ={0}

where, for fixed ¢ regular,

)
(QVz A+6t, DUz A+5E) x4 50

vectors avz.y € M(x - A) | vanishes at least to order

jatt=0Vbe U(nP)

\




oM (x -

A /M (z-\)? T is semisim-
ple

° Kazhdan-Lusztig

polynomials  tell  you:
M(z- )t Ly - V)] = co
efficient of ¢lé(®)—4)=3)/2
n wam,wxy(Q)

e Jantzen filtration does
not depend on choice of ¢

e get a non-degenerate invariant Her-

mitian form (-, ->j on M(x - )\)j

e define analogous polynomials keep-
ing track of signatures: form on each
copy of L(y - \) in j*® level of filtra-
tion has signature 4 signature of the

Shapovalov form on L(y - \)

e form on 5™ level, however,

does; chsM(x - A + dt) equals:
;i Chs (-, ), for small £ > 0
Zj even chs <.’ '>j o Zj odd chs <'7 '>j

for small t < 0




More precisely, the signature of the form depends on the (integral)
Weyl chamber containing §: if § € w€p, there are integers a* 2"

Y,J
such that
Z a,m-wch L(y

ySw

RWATTA(2)) Z Z am-wch L(y

J y<w

A
Proposition: Letting a“”)‘ W= Zj a; j’w,

1=]
ChSL(QZ’)\) — Z (_1)j—1 <H ag?jz)\lw> Ryl)\—l—on (yl)\)

y1<-<y;=x =2




The usual Kazhdan-Lusztig polynomials may be computed via the

inductive formulas:
a) Puyzwsy = Puwszswyy if ys >y and x,zs > y, s simple
a’) Puyyzwsy = Pwyszwsy if Sy >y and x,sz >y, s simple

b) If y > ys then

£(z)—£(y)+1
E M(wkzv w)\y)q 2
z€Wi|zs>2

c l1—c _
q Pwas,wAy_"q Pwkx,wxy - P
WAL, WH =

T Pwszwiys

Signed versions: inductive formulas simlar. Have to include some

signs which depend on x, A\, w, s = s,.




We would like to extend this work to generalized Verma modules
for the purpose of studying invariant Hermitian forms on
Harish-Chandra modules. Open problems which need to be solved
for this purpose:

e reducibility of generalized Verma modules

— computing the determinant of the Shapovalov form in some
special cases: Khomenko-Mazorchuk

— sufficient conditions for certain principal series
representations: Speh-Vogan

e determining the composition series of a generalized Verma

module (i.e. what are the irreducible factors, and what are

their multiplicities)

— composition series for generalized principal series
representations = determine reducibility of representation
induced from a parabolic subgroup




