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These are notes for the third meeting of the Atlas of reductive Lie groups
project at AIM, in Palo Alto. They describe how to take the description
of the representation theory of a real reductive Lie group (cf. Jeff Adams’
notes from last year) to finite combinatorial terms, that can be implemented
in a computer.

These ideas evolved during my stay at MIT last fall, and benefited im-
mensely from innumerable discussions with David Vogan, as well as from an
intensive session with Jeff during a visit to Maryland.

1 Real forms and strong real forms

1.1. Throughout these notes, G will denote a connected complex reductive
algebraic group. Define a pinning of G to be the datum of a maximal torus
T , a Borel B containing T , and a set {Xα}α∈Π, where Π is the set of simple
roots for T in G defined by B, and Xα ∈ Lie(G) is a root vector for the
simple root α. We will fix once and for all such a pinning P.

To the choice of T also corresponds a root datum (X,R,X∨, R∨). Here
X is the character group of T , X∨ = Hom(C×, T ) its cocharacter group,
and R and R∨ are the roots and coroots for T in G, respectively. The choice
of B turns our root datum into a based root datum (X,Π,X∨,Π∨), where
Π and Π∨ are the sets of simple roots and coroots, respectively. It is worth
noticing that conversely, given two lattices in duality which we might as well
take to be Zn, and given two finite subsets Π and Π∨ of Zn, together with
a bijection α → α∨ from Π to Π∨, we get a based root datum if and only if
the matrix (< α, β∨ >)α,β∈Π is a Cartan matrix (i.e., after permutation of
Π, a block-diagonal matrix whose diagonal entries are either 0 or one of the
familiar Cartan types An–G2.)
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1.2 Exercise. — Show that up to GL(n,Z)-conjugation there are exactly
three types of root data with rank n ≥ 2 and semisimple rank one (i.e.,
|Π| = 1.) In other words, up to GL(n,Z)-conjugation (using the transpose
inverse action on the dual side) there are only three types of pairs (α,α∨)
s.t. < α,α∨ >= 2.

1.3. In principle, a real form of G should be an antiholomorphic involution
σ of G; and also in principle, one should consider two real forms to be
equivalent if they are conjugate under the full automorphism group Aut(G).
However, it turns out that the appropriate notion of equivalence is rather
equivalence under conjugation by G itself (for (quasi)simple G, this makes a
difference only in type Dn with n even; for general semisimple or reductive
G, however, the difference is big.)

Also, G-conjugacy classes of antiholomorphic involutions are in (1, 1)-
correspondence with G-conjugacy classes of ordinary involutions of G. (To
set up such a correspondence, choose a compact real form of G, with an-
tiholomorphic involution σ0. Then any σ may be conjugated to commute
with σ0; similarly any involution θ may be conjugated to commute with σ0;
then the map σ → θ = σσ0 sets up a bijection between anti-involutions
commuting with σ0 and involutions commuting with σ0.) In this correspon-
dence, the group K = Gθ of fixed points of θ in G is the complexification of
a maximal compact subgroup of Gσ (the group of real points of G for σ.)
In particular, the component group of Gσ is isomorphic to the component
group of K.

Henceforth, we view real forms of G as G conjugacy classes of ordinary
involutions. In this picture, the identity involution corresponds to the com-
pact real form. Note that the real reductive Lie groups we are dealing with
in this way are the full groups of real points of complex connected reductive
groups defined over R. To get to results about open subgroups of such (e.g.,
their identity components), requires some minor modifications which we will
not go into here.

1.4. Consider the exact sequence

1 → Int(G) → Aut(G) → Out(G) → 1

where Int(G) = G/Z(G). We say that two involutions θ and θ′ are in the
same inner class, or are inner to each other, if they have the same image in
Out(G). Obviously this defines a partition of the real forms of G.

It is well-known that the group Int(G) acts simply transitively on the
set of pinnings (cf. 1.1.) Therefore Out(G) may be identified with the
stabilizer in Aut(G) of our fixed pinning P. Clearly, the permutation of
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the Xα induced by an element of Out(G) is entirely determined by the
corresponding permutation of the set of simple roots Π; therefore Out(G)
may be identified with a subgroup of the group of automorphisms of the
based root datum (X,Π,X∨,Π∨). Conversely, any automorphism of the
root datum may be lifted to an automorphism of G (reference??); hence
Out(G) is exactly the group of automorphisms of the based root datum.

Note that when G is semisimple, any automorphism of the based root
datum is entirely determined by the automorphsim of the Dynkin diagram
it induces; but here we do not have surjectivity in general (think of the case
where G = PSL(2) × SL(2), and the automorphism interchanges the two
factors of the Dynkin diagram.) However, we do have surjectivity when G
is simply connected, or adjoint.

The basic starting datum for the description of representations that we
are using in these notes is the complex group G, together with a given inner
class of real forms, i.e., a given involution γ of the based root datum. It
is natural to consider the inner class up to conjugacy in Aut(G); it turns
out that there are then in all cases finitely many possibilities for any given
G. (In the case where G is a torus, this hinges on the fact that there are
finitely many conjugacy classes of involutions in each group GL(r,Z), an
interesting exercise to which we will come back later.)

1.5 Example. — Let G = SL(n), n ≥ 3. Then there is one non-trivial
automorphism of the Dynkin diagram, so there are two inner classes of real
forms. The inner class corresponding to the identity automorphism may be
called (for any G) the equal rank inner class, as it corresponds to those real
forms for which rk(K) = rk(G). We will see that in our example, this inner
class is made up of the real forms SU(p, q), p + q = n, 0 ≤ q ≤ n/2.

For the other inner class, again we will see that there are either one or
two real forms, depending on the parity of n : if n is odd, there is just one
real form, viz. the split form SL(n,R); if n is even, there is in addition the
form SL(n/2,H).

1.6. Given our choice of pinning P in 1.1, and given an inner class of
real forms, there is a unique representative θfund of this inner class which
belongs to Aut(G,P). We say that the real form corresponding to θfund is
the fundamental form of the inner class (for instance, for the equal rank inner
class, the fundamental form is the compact one, and θfund is the identity.)

Now we consider the semidirect product

GΓ = G ⋊ Z2 = G
∐

G.δ
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where the semidirect product is through the automorphism θfund, i.e., the
action of int(δ) on G is θfund.

A strong involution for G in the chosen inner class is an element x ∈
G.δ such that x2 ∈ Z; the involution corresponding to x is the involution
θx = int(x). A strong real form is a G-conjugacy class of strong involutions.
Clearly, the map x → int(x) goes over to a surjection from strong real forms
to real forms, and also clearly this map is bijective when G is adjoint.

1.7. Let W be the Weyl group of (X,R,X∨, R∨). Then W acts simply
transitively on the set of bases, so our group Out(G) = Aut(X,Π,X∨,Π∨)
is also isomorphic to Aut(X,R,X∨, R∨)/W . Viewing our involution γ ∈
Out(G) as an involution of X, we may consider the involution −tγ of X∨;
of course this will almost never fix Π∨, but there is a unique involution
γ∨ congruent to it modulo W that will (in fact it should be clear that
γ∨ = −tγ.w0, where w0 is the longest element in W .) In this way, we define
an inner class for the dual group G∨, with based root datum (X∨,Π∨,X,Π),
which we call the inner class dual to γ. In the example of SL(n) which we
began in 1.5, the dual group is PSL(n), and the duality interchanges the
“equal rank” and “split” inner classes.

1.8. The fundamental real form may be characterized by the fact that there
exists a Borel preserved by θfund. It turns out that there is also a unique
real form satisfying the dual condition, namely that there is a Borel B such
that θ(B) = B is the opposite Borel. This is called the quasisplit real form
in the class. We will often use notation like θqs, xqs, for data pertaining to
this real form.

2 The one-sided parameter space

2.1. We are now going to describe the main combinatorial construction.
The set thus obtained plays a fundamental technical role for the main clas-
sification problems that we have to deal with.

Recall the notation of 1.6. The set we are interested in is the set X of
triples (x, T ′, B′) up to G-conjugacy, where

(a) x ∈ G.δ, and x2 ∈ Z(G) (i.e., x is a strong real form representative as
defined in 1.6);

(b) T ′ is a maximal torus of G, and B′ is a Borel containing T ′;

(c) the involution θx = int(x) normalizes T ′.

Of course, all pairs T ′ ⊂ B′ are conjugate in G. So we may as well assume
that T ′ = T and B′ = B, where (T,B) is the pair chosen in 1.1. By
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construction T is stable under int(δ), so int(x) normalizes T if and only if x
belongs to N.δ, where N is the normalizer of T in G. With these remarks,
our set X becomes the set of elements x ∈ N.δ such that x2 ∈ Z(G), up to
T -conjugacy (because the stabilizer of the pair (T,B) in G is exactly T .)

2.2. It is in fact not hard to see that the set X is in canonical bijection
with the disjoint union over all strong real forms of G of B × K-orbits in
G (or equivalently, K-orbits in G/B, or B-orbits in G/K), as described by
Richardson and Springer [3].

Indeed, fix a strong involution x, which we may assume to lie in N.δ.
Then we may write for g ∈ G :

g.x.g−1 = g.θx(g−1).x

which shows that the G-conjugacy class of x identifies with the image of the
map g → τx(x) := g.θx(g−1). Now of course τx(G) is isomorphic to G/K,
and it is shown in [3] (or rather, in [4]) that the B-conjugation orbits in τx(G)
(which correspond to the left B-orbits in G/Kx) are in (1, 1) correspondence
with the T -conjugation orbits in τx(G) ∩ N . After multiplication by x, this
amounts to taking the elements in X which correspond to the strong real
form defined by x.

2.3. We have denoted W the Weyl group of (G,T ). We may form the
semidirect product

WΓ = W
∐

W.δ

just as in 1.6. When w.δ is an involution in W Γ, we say that w ∈ W is a
twisted involution for the involution of W induced by δ (which can be read
off from the Dynkin diagram involution corresponding to δ). The natural
map N → W restricts to a map x → τx (not the same τx as in 2.2!) from X
to I, where I is the set of elements w.δ, with w a twisted involution.

One way to interpret this map is to look at the action of W.δ on the
torus, and to note that τx acts on T as the restriction of the involution θx

to the torus. We will say that I is the set of root datum involutions for the
given G and inner class.

It turns out that the map x → τx is surjective (5.6). For each τ ∈ I, we
denote Xτ the fiber of X over τ .

2.4 Proposition. — Fix τ ∈ I. Denote Tτ the subgroup of elements
t ∈ T such that t.τ(t) is central in G, and T−τ the subgroup of elements t
such that τ(t) = t−1. Then Tτ acts simply transitively on the set of strong
involutions in N.δ lying over τ , and Tτ/T

−τ
◦ acts simply transitively on the

fiber Xτ .
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Proof. — Fix a strong involution x in N.δ lying over τ . Then any element
of N.δ lying over τ can be uniquely written in the form t.x with t ∈ T . We
have (t.x)2 = t.int(x)(t).x2, and int(x)(t) = τ(t), so (t.x)2 is central if and
only if t.τ(t) is central, whence our first claim. Clearly Tτ contains T−τ .

Let s ∈ T . Then the conjugation action of s on t.x may be written as

s.t.x.s−1 = s.t.int(x)(s−1)x = s.t.τ(s−1).x = s.τ(s−1).t.x

because T is commutative, and therefore the action is just left multiplication
by s.τ(s−1). Clearly for each s ∈ T the element s.τ(s−1) is in T−τ , and even
in T−τ

◦ because T is connected. On the other hand, if s ∈ T−τ , we have
s.τ(s−1) = s2, so the image of the map s → s.τ(s−1) is exactly the identity
component of T−τ , and we are done.

2.5 Corollary. — When G is semisimple, the set X is finite, and each
fiber Xτ carries a simply transitive action of a finite abelian group, canon-
ically defined by τ . For general G, the same conclusion holds for each set
X (z) := {x ∈ X | x2 = z}, with z ∈ Z(G) fixed (note that x2 depends only
on the conjugacy class of x, and may therefore be defined at the level of X );
Xτ (z) carries a simply transitive action of the elementary abelian two-group
T−τ/T−τ

◦ .

Proof. — From the proof of the proposition, we see that (t.x)2 = (t′x)2 if
and only if t.τ(t) = t′.τ(t′), which may be rewritten as t−1.t′ ∈ T−τ . So the
group T−τ acts simply transitively on each set of strong involutions in N.δ
with fixed square; it follows that T−τ/T−τ

◦ acts simply transitively on each
Xτ (z).

When G is semisimple, Z(G) is finite, so the whole group Tτ/T
−τ
◦ is

finite.

2.6 Corollary. — Each Xτ (z) has the structure of an affine space over
the two-element field F2.

3 Classification of Cartan subgroups and determi-

nation of real Weyl groups

3.1. It is clear from the definition that in the natural conjugation action of
N on X , the torus T acts trivially (precisely because X has been defined as
a set of T -orbits), and so gives rise to an action of the Weyl group W . Our
objective in this section is to study the orbits of this action, and to show
their relation to the classification of Cartan subgroups for the various strong
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real forms the given inner class. This is also done in [3], where additional
results are given (see in particular sect. 9 of that paper.)

3.2. The main observation is the following. Let T be the set of pairs
(x,H), where x is a strong involution in G, and H is a maximal torus in G
normalized by int(x), up to G-conjugation. We look at T in two different
ways.

First, we may always conjugate by an element of G so that H = T . Then
we see that T identifies with the set of strong involutions x ∈ N.δ, up to
N -conjugation; but clearly this is also the set of W -orbits in X .

Second, we may choose a set {xi}i∈I of representatives of G-conjugacy
classes of elements x (in other words, a set of representatives of strong real
forms of G in our given inner class.) Then every (x,H) is G-conjugate to an
element of the form (xi,H), and H is now determined up to conjugacy by
the stabilizer of xi in G. Since for any involution θ of G there are θ-stable
tori, all xi, i ∈ I, will occur. We note that int(g)(xi) = xi is equivalent to
int(xi)(g) = g, so the stabilizer of xi in G is just the fixed point group Ki of
the corresponding involution θi = int(xi). So from this picture we see that
the set T also identifies with the disjoint union of the sets of Ki-conjugacy
classes of θi-stable maximal tori in G. (In the language of groups of real
points that we have been avoiding, this is also the set of (G,σi)(R)-conjugacy
classes of real maximal tori in (G,σi)(R), where σi is an antiholomorphic
involution corresponding to θi.)

So we have proved the following

3.3 Theorem. — The set of W -orbits in X is in natural (1, 1)-corres-
pondence with the disjoint union over all strong real forms of G of the set
of Kx-conjugacy classes of θx-stable Cartan subgroups in G, where x is a
representative of the strong real form, θx = int(x), and Kx = Gθx .

3.4. In practice, the W -orbits in X will be computed by picking a set
of representatives for the set of W -orbits in I (an elementary Weyl group
computation), and then for each such representative τ , computing the W τ -
orbits in the fiber Xτ , where W τ denotes the stabilizer of τ in W , also the
set of w ∈ W such that τ(w) = w. The delicate issue here is the choice of
basepoint in the fiber; we will come back to that in 6.10.

3.5. The construction in 3.2 also allows us to compute real Weyl groups.
Given G, an involution θ and a θ-stable Cartan subgroup H, we denote
W (K,H) the group NK(H)/ZK(H), with K = Gθ. (The natural definition
in terms of groups of real points gives rise to the same group.) Now let x be
a strong involution such that int(x) = θ. Then NK(H) is the stabilizer in G
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of the pair (x,H); and of course ZK(H) is just H ∩K. If we go over to the
first picture, where H = T and x ∈ N.δ, we see that W (K,H) is the image
in W of the centralizer of x in N , which is also ZN (x)T/T . But ZN (x)T is
also the stabilizer in N of the T -orbit of x; so W (K,H) may be identified
with the stabilizer in W of the image of x in X .

In other words, we have proved the following:

3.6 Theorem. — In the description of Theorem 3.3, the real Weyl group
corresponding to a given θx-stable Cartan H is isomorphic to the stabilizer
in W of any element of the corresponding W -orbit in X .

3.7 Proposition. — For any given strong real form with representative
x, the map H → τ from Kx-conjugacy classes of θx-stable Cartan subgroups
to W -conjugacy classes of root datum involutions is injective.

Proof. — This result is essentially Proposition 2.5 in [3]. Let us recall
the main idea of the proof. The statement is equivalent to saying that if
x and x′ = g.x.g−1 are two strong involutions lying over the same root
datum involution τ , then they are N -conjugate. Now the hypothesis is that
there exists t ∈ T such that g.x.g−1 = g.θx(g−1).x = t.x. Now we apply
Proposition 2.3 from [3], which says that if t = g.θx(g−1) for some g ∈ G,
then there is also an n ∈ N such that t = n.θx(n−1); this will translate to
x′ = n.x.n−1, whence our result.

3.8 Corollary. — For any given real form of G, the set of K-conjugacy
classes of θ-stable Cartans may be canonically identified with a subset of
I/W .

3.9. One can endow the set I/W with a poset structure, as follows. We
say that [τ ] ≤ [τ ′] if and only if we may choose the representatives τ and τ ′

such that the fixed point space of τ in t = Lie(T ) contains that of τ ′. Since
this condition implies in particular that dim(tτ

′

) ≤ dim(tτ ), and tτ = tτ
′

implies τ = τ ′, this is indeed an order relation. The poset thus obtained has
a unique minimal element (the orbit of δ, corresponding to the fundamental
Cartan in each real form), and a unique maximal element (this is reached
if and only if the real form is quasisplit, and is then the unique most split
Cartan for this real form.) We will see that for any real form of G in our
inner class, the image in I/W of the set of conjugacy classes of Cartan
subgroups is an interval of the form [[δ], [τmax]], where [τmax] corresponds to
the most split Cartan for the given real form.
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4 Classification of real forms and strong real forms

4.1. Let us now show how Theorem 3.3 yields a classification of real forms
and strong real forms in terms of W -orbits.

It is known (reference??) that for each involution θ in our chosen in-
ner class, there is exactly one K-conjugacy class of fundamental Cartan
subgroups, i.e., θ-stable Cartan subgroups that are contained in a θ-stable
Borel. This implies that the set of G-conjugacy classes of strong involutions
is in bijection with the set of G-conjugacy classes of pairs (x,H), with H
int(x)-stable and fundamental. In the picture of Theorem 3.3, these Cartan
subgroups are the ones that map to the orbit of δ in I. So, in the notation
of 2.3, the set of strong real forms in our inner class is in bijection with the
set of W δ-orbits in Xδ (cf. 3.4).

The real forms of G in our given inner class are classified by a similar
computation in the adjoint group.

4.2 Example. — Consider the case where G = SL(2). Here there is only
one inner class of real forms, which is therefore the equal rank one. The
fiber Xδ is then just the group of elements in T with square ±1, i.e., it is
the subgroup T (4) ≃ Z4 of elements of T with order dividing four.

The action of the non-trivial element of the Weyl group is by t → t−1.
Hence there are three orbits : {1}, {−1} and {i,−i} (in the obvious iden-
tification of T with C×). So there are three strong real forms : two cor-
responding to the compact real form, and one corresponding to the split
one.

4.3 Example. — (example 1.5, continued) Consider again the case of
SL(n), n ≥ 3. To compute the classification of real forms, we go over to the
adjoint group PSL(n).

For the equal rank inner class, we have δ = Id, so that W δ = W , and
Xδ = {t ∈ T | t2 = 1}. So the set of real forms is in (1, 1) correspondence
with the set of Sn-orbits in Zn

2/∆, where ∆ denotes the diagonal. It is now
an easy exercise to check that the number of real forms is as stated in 1.5.

For the other inner class, we hace seen in Corollary 2.6 that Xδ carries a
simply transitive action of the group T−δ/T−δ

◦ . This is also the component
group of the group of real points of the real form defined by the involution
−δ of T . But in this case it is very easy to determine the structure of
T (R), because the character lattice of T (which is just the root lattice of
the root system) has a basis that is permuted by δ. We find that T (R) is
a complex torus when n is even, hence Xδ is a singleton, and T (R) is the
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direct product of a one-dimensional split real torus with a complex torus
when n is odd; hence |Xδ| = 2 in this case. In the first case, it is already
clear that there can only be one real form for SL(n,R) in this inner class,
which must necessarily be the split form. In the second case, there could be
one or two; we will see in a moment that in fact there must be two.

To compute the strong real forms, in the equal rank case, we have to
compute the W -orbits in an abelian group of order n.2n−1, with n−2 cyclic
factors of order 2 and one cyclic factor of order 2n. When n is odd, it is
in fact clear that this group is the direct product of Z(G) and T (2); so in
this case we just get n copies of the orbit picture in the adjoint group, and
therefore n isomorphic strong real forms for each real form.

When n is even, the situation gets more interesting. For instance, when
n = 4, one has three real forms, with orbits of cardinalities 1 for SU(2),
4 for SU(3, 1) and 3 for SU(2, 2) (the correspondence between orbits and
the usual nomenclature of real forms will be explained in 4.6 below.) The
strong real forms are determined by looking at the S4-orbits in the group
of diagonal matrices of the form (ε1e

ikπ/4, ε2e
ikπ/4, ε3e

ikπ/4, ε4e
ikπ/4), where

εj = ±1 for all j, 0 ≤ k ≤ 3, and the product of the signs is 1 for k even,
−1 for k odd. Then for k even, there are three orbits, two of cardinality
one, corresponding to strong real forms isomorphic to SU(4), and one of
cardinality six, corresponding to a strong real form isomorphic to SU(2, 2);
for k odd, there are two orbits of cardinality four, corresponding to strong
real forms isomorphic to SU(3, 1). In particular, the possible values for
z = x2 for the quasisplit forms are 1 and −1. In general, there are always
n strong real forms for each real form, except for the quasisplit form when
there are n/2; in fact, one may show that if we partition the strong real
forms according to the values of x2, then there are just two types of orbit
pictures, according to whether zn/2 = 1 or −1. (this example and a number
of others are also given in [1].)

Finally, for the non-equal rank inner class, we note that θ acts on the
center by inversion (because this is clear for the split form, and the action
on the center is the same for all involutions in a given inner class.) So the
square of a strong involution in this class can only take the values ±1. When
n is odd, the only possible value is of course 1. When n is even, (well, what
do you know! when n is even, the square should be 1 for SL(n/2,H), and
−1 for SL(n,R), right, but how to prove it?)

4.4. Let τ ∈ I be a root datum involution, and let θ be an involution of G
in our chosen inner class, inducing τ .

The datum of τ yields the classification of roots into real, imaginary and
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complex, in the usual way. Now it is easy to see that once the root datum
involution is fixed, the involution θ is entirely determined by its action on
the root vectors Xα of the pinning P (just because those root vectors and
the X−α generate the Lie(G)). Of course, θ(Xα) should be a root vector for
the root θ(α). Then one sees that if θ(α) 6= α, i.e., if α is real or complex,
all the possibilities for θ are T -conjugate (reference?? is this even right?).
So the only real choices are for the imaginary roots α that belong to our
chosen basis. For each such α, we have θ(Xα) = ±Xα.

In general, a grading of a root system Φ is a map gr : Φ → Z2 which
satisfies gr(α) = gr(−α) and gr(α+β) = gr(α)+gr(β) for all α, β in Φ such
that α+β ∈ Φ. Once a basis of Φ is chosen, it is clear that such a grading is
entirely determined by the degrees of the simple roots, and that conversely,
the degrees of the simple roots may be chosen arbitrarily. Hence there are
2r possible choices, where r is the rank of the root system Φ.

Clearly θ induces a grading of the imaginary root system Φi, by setting
gr(α) = 0 if θ(Xα) = Xα (the compact roots), and gr(α) = 1 when θ(Xα) =
−Xα (the non-compact roots.) It may be shown that this grading, together
with the datum of τ , defines θ up to T -conjugacy. Hence we get an injection
from the set of real forms for which the Cartan of type τ is defined, to
the set of W τ -conjugacy classes of gradings of the imaginary root system.
A delicate aspect of this is that this injection is usually far from being a
bijection. One of our objectives is going to be to determine its image.

4.5. For the fundamental torus, and G adjoint, say, the correspondence
can be made very precise. Of course, for the equal rank case, all roots
are imaginary, so we just have to deal with gradings of the root system
Φ = Φ(G,T ). The fundamental involution θfund induces the trivial grading
where all roots are compact. If we denote T (2) the subgroup of elements
of order two in T , we get T−δ = T (2) in this case, from which it follows
easily that all gradings are allowed, and that in fact real forms are in (1, 1)-
correspondence with W -conjugacy classes of gradings.

For the general case where δ is arbitrary, the grading of the imaginary
roots is entirely determined by its restriction to those imaginary roots that
are in Π. The reasoning to prove this is as follows: let β be a positive
imaginary root, and α simple such that < β,α∨ > is positive. If α is
imaginary, of course β′ = β − α is again positive imaginary, and choosing
root vectors Xβ′ and Xβ = [Xα,Xβ′ ], we see that gr(β) = gr(β′) + gr(α)
is determined inductively. Now assume α is complex. Then we also have
< β, δ(α)∨ > positive. Now there are two cases. If α and δ(α) are not
adjacent, then we see that < β − α, δ(α)∨ > is again positive, and we may
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write β = β′+α+δ(α) for a positive imaginary β′. Now we note that Xα and
Xδ(α) commute, so we may pick root vectors Xβ′ and Xβ = [Xα, [Xδ(α),Xβ′ ]].
Then

θ(Xβ) = [Xδ(α), [Xα, (−1)gr(β
′)Xβ′ ]] = (−1)gr(β

′)Xβ

from the commutativity of Xα and Xδ(α), and we are done. A simple case-
by-case analysis reveals in fact that α and α′ can be adjacent only in type
An with n even, and then only when β = α + δ(α), i.e., essentially in type
A2. Then we may take Xβ = [Xα,Xδ(α)] and

θ(Xβ) = θ([Xα,Xδ(α)]) = [Xδ(α),Xα] = −Xβ

so the root β must be non-compact.
So here, there will be in general many gradings that are not allowed. The

computation of T−δ/T−δ
0 that we did for PSL(n) in 4.3 trivially generalizes,

and we get a group of order 2r, where r is the number of δ-fixed elements
in Π, where we then have to describe the action of the group W δ.

4.6 Example. — (example 4.3, continued) Now we are in a position to
identify the real forms of SL(n) corresponding to the orbits in 4.3. The Sn-
orbits in Zn

2/∆ are classified by their cardinality, up to complement, i.e., by
an integer q, with 0 ≤ q ≤ n/2. Taking the representative with the ones
at the end, we see that we may represent the corresponding involution by
conjugation with the diagonal matrix that has p = n− q ones followed by q
minus ones. The action of this matrix on the Xα for α simple (which have
a single 1 just above the diagonal) is trivial except for the single case where
the non-zero entry is at position (p, p + 1) (and q > 0 of course.) It is easy
to see that this is exactly the grading for SU(p, q).

For the non-equal rank case with n even, from the procedure described in
4.5, which really becomes very simple in type A, we see that the two gradings
that are defined are the one for which all imaginary roots are compact, and
the one for which they are all non-compact (the imaginary root system is
of type Am

1 , m = ⌊n/2⌋.) So there are definitely going to be two distinct
real forms in this case. After we have explained how to generate all Cartans
for a given group using Cayley transforms (cf. 5.6), it will be apparent that
the compact grading gives rise to a group with a single conjugacy class of
Cartan subgroups, which must therefore be SL(n/2,H), and the other one
corresponds to the split form SL(n,R).
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5 Cayley transforms

5.1. We now come to the essential operation of Cayley tranform. This will
enable us to move from one conjugacy class of Cartan subgroups to another,
and in this manner bootstrap things from the fundamental Cartan. We will
approach this operation in a purely combinatorial manner—no attempt shall
be made to relate this to the usual definition of Cayley transform for which
we refer to Vogan [6] (although this will of course be essential if we want to
link the combinatorial picture to actual representations.)

5.2. Let x be a strong involution, and τ ∈ I the corresponding root datum
involution. Recall from 4.4 the grading of the imaginary root system Φi

induced by x. Let α be an imaginary non-compact root, and Xα a corre-
sponding root vector. Denote ϕα the homomorphism SL(2) → G taking
(

1 0
0 −1

)

to α∨ and

(

0 1
0 0

)

to Xα, and let σα = ϕα

(

0 −1
1 0

)

. Then σα

belongs to N , and is a representative of the root reflection sα. We will see
later that it is possible to normalize the choice of σα in terms of our cho-
sen pinning, but in any case it is clear that the various choices of σα are
conjugate under the one-parameter subgroup Tα of T corresponding to α∨.
Denote mα = σ2

α, an element of order two in T .

5.3 Definition. — Let the notation be as in 5.2. The Cayley transform
of x through α is the element cα(x) = σα.x ∈ N . This is well-defined and
independent of the choice of σα at the level of the one-sided parameter space
X , on the set Xα

τ of elements in Xτ for which α is noncompact.

5.4. To see that Definition 5.3 makes sense, the first thing to check is that
σα.x is again a strong involution. In fact, we will even show that cα(x) is
conjugate to x in G. Indeed, it is clear that θx normalizes Gα = ϕα(SL(2)),

and that its action on that subgroup is conjugation by tα = ϕα

(

i 0
0 −i

)

.

Therefore we may write x = tα.x′ where x′ commutes with Gα. Then to
prove that σα.x and x are conjugate in G, it suffices to check that tα and
σα.tα are conjugate in Gα, which is an easy exercise in SL(2). So cα preserves
strong real forms for G.

The root datum involution induced by σα.x is of course sα.τ . We have
seen that the conjugation action of T on the strong involutions lying over
τ is by multiplication with an element in T−τ

◦ . But clearly T−τ
◦ commutes

with Gα (as α is imaginary), and T−τ
◦ ⊂ T−sα.τ

◦ ; so the Cayley transform
goes over to X ; and since α is real for sα.τ , we have Tα ⊂ T−sα.τ

◦ as well, so
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that the map induced at the level of X is indeed independent of the choice
of σα.

5.5. Let us now show that the Cayley transform cα is surjective from
Xα

τ to Xsα.τ , and at most two-to-one. Keep the notation of 5.4. For the
surjectivity, let y be a strong involution in N lying over sα.τ . Multiplying
by an appropiate element of Tα ⊂ T−sα.τ

◦ , we may assume that θy := int(y)
takes Xα to X−α = int(σα)(Xα). In other words, we may write y = σα.tα.x′

where x′ commutes with Gα, and is then clear that x = tα.x′ is a strong
involution lying over τ whose Cayley transform is y.

For the second statement, suppose that x1 = tα.x′
1 and x2 = tα.x′

2 are
strong involutions in N lying over τ , such that y1 = σα.x′

1 and y2 = σα.x′
2

are congruent modulo T−sα.τ
◦ . In particular, this means that y2

1 = z = y2
2,

and therefore also z = x2
1 = x2

2. So x1 and x2 differ by an element t ∈ T−τ .
But because of our hypothesis on the y’s, t must belong to T−sα.τ

◦ = T−τ
◦ .Tα.

From the condition tτ(t) = 1 it follows that t ∈ T−τ
◦ Tα(2), and there are

indeed at most two possibilities for t modulo T−τ
◦ , depending on whether

Tα(2) is contained in T−τ
◦ or not. We note that this condition depends solely

on α and τ ; therefore cα is either two-to-one on all of Xα
τ , or one-to-one on

all of it.
Also, one has either Xα

τ = Xτ , or it is “of index two” in Xτ (for instance,
if Xτ is finite, this means that |Xα

τ | is either equal to |Xτ |, or equal to one
half of it.) The first case happens when the character α is trivial on the
group Tτ introduced in 2.4; the second when it is non-trivial (notice that α
takes values ±1 on Tτ ).

When Xτ is finite, the conclusion is that the cardinality of Xsα.τ is either
equal to that of Xτ , or drops by a factor of two or four; and the “typical”
situation is a drop by a factor of four. Of course this is not sustainable in
general as we move through a sequence of Cayley transforms towards the
quasisplit root datum involution (particularly when the split form is equal
rank); the rule of thumb is that there is about “half” the room required,
and therefore it might be expected that the Xτ tend to stabilize (and often
become singletons) from the point where τ is about “half split”. This turns
out to be true in many examples, as may be checked using the cartan

command in the Atlas software package.

5.6. We make some further elementary remarks about Cayley transforms.
First of all, we have a simple compatibility between Cayley transforms and
the conjugation action (also called cross-action) of W : this is simply w ×
cα(x) = cw.α(x) for all ξ ∈ Xτ , where we use a × to denote the action of W
induced by the conjugation action of N on the set of strong involutions in
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N . This shows that Cayley transforms through arbitrary imaginary roots
are just cross-conjugates of Cayley transforms for imaginary roots in Pi.

The Cayley transform is defined at the level of root datum involutions
by cα(τ) = sα.τ , whenever α is imaginary for τ . It is well-known (see
for instance[2]) that any root datum involution can be obtained from δ
through a sequence of conjugations and Cayley transforms for simple roots,
or equivalently, through a sequence of Cayley transforms for arbitrary roots
(the corresponding roots will then necessarily be pairwise orthogonal.) In
particular, noting that for any imaginary root there will always be strong real
forms that make it non-compact (reference??), this proves the surjectivity
of the canonical map from X to I.

5.7. Recall from 4.4 the grading of the imaginary root system defined by
any strong involution x. If α is a noncompact imaginary root, one would
like to describe the grading defined by cα(x). This is done in Vogan [6],
Definition 5.2 and Lemma 10.9 :

5.8 Proposition. — Let x ∈ N.δ be a strong involution, and let α be a
noncompact imaginary root for x. Then the imaginary roots for cα(x) are
the imaginary roots for x orthogonal to α, and we have

grσα.x(β) =

{

grx(β) if α + β is not a root

grx(β) + 1 mod 2 if α + β is a root

(i.e., the grading is preserved if α+β is not a root, and reversed otherwise.)

Proof. — Choose root vectors Xα and Xβ in Lie(G). Note that α+β is not
a root if and only if Xα and Xβ commute, which is equivalent to the fact
that the corresponding three-dimensional groups Gα and Gβ commute. But
then it is clear that σα acts trivially on Xβ , hence the first case.

If α+β is a root, the Xβ is the zero-weight space of a three-dimensional
representation of Gα (because no string of roots can be longer than four.)
So the action of σα on Xβ is the same as its action on the Cartan in Lie(Gα),
i.e., by −1, and the grading of β is reversed.

6 Cocycles and gradings

6.1. We have seen that it is important to understand the orbits of W
acting on the one-sided parameter space X . This immediately reduces to
the understanding of the W τ orbits on the fiber Xτ , when τ runs through
a set of representatives of Weyl group orbits in the set I of root datum
involutions for our given inner class.
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So fix an element τ ∈ I. The stabilizer W τ of τ in W is described in
[6], as follows. Let Φ = Φ(G,T ) be the root system of G with respect to
T ; let Φr and Φi be the subsystems of real and imaginary roots w.r.t. τ ,
respectively. Let Φc be the set of roots that are orthogonal both to ρr and
ρi, where as usual ρ denotes the half-sum of positive roots. Then Φc is a
complex root system: it splits up into the direct sum of two root systems
interchanged by τ . Now we have ([6], Proposition 3.12) :

W τ = Wc ⋉ (Wi × Wr)

where Wi and Wr are the Weyl groups of Φi and Φr respectively, and Wc

is the “diagonal subgroup” of the Weyl group of Φc: it is generated by the
elements sα.sτ(α), where α runs through the set of simple roots of one of
the two factors of Φc (note that these generators have a −1 eigenspace of
dimension 2, so they are not reflections; hence W τ is not a Coxeter group
in general.)

6.2 Proposition. — The actions of Wc and Wr on the fiber Xτ are trivial.

Proof. — (as explained to me by David Vogan). Recall the notation from
5.4. Let α be a real root, and Gα be the corresponding three-dimensional
subgroup. Let x be a strong involution in N lying over τ . Then θx induces
the split involution on Gα, and we may in fact assume that τx induces the
same involution as int(σα) (which is Tα-conjugate to the σα.tα we used in
5.5). Then we may write x = σα.x′, where x′ commutes with Gα, and it is
clear that σα commutes with x, which proves that the action of sα on Xτ is
indeed trivial.

When α is in Φc, we may reason as follows. Pick σα as before, and
choose στ(α) = x.σα.x−1. Note that α+ τ(α) is not a root, because it would
have to be imaginary and orthogonal to ρi; therefore the two groups Gα

and Gτ(α) commute, and in particular σα and στ(α) commute. But clearly
x.σα.στ(α).x

−1 = στ(α).σα, so the generators of Wc also act trivially on Xτ ,
and we are done.

6.3. It follows from 6.2 that the orbits of W τ on Xτ are really just the
Wi-orbits. Moreover, the action of W preserves squares, and so we wave an
action of Wi on each Xτ (z); recall from 2.6 that this set has the structure
of an affine space over the two-element field F2, preserved by W . The
corresponding linear action is the action of W on T−τ/T−τ

◦ , which may be
readily computed in terms of lattices.

There is an obvious action of the center on each Xτ by left multiplication.
Since this obviously commutes with G-conjugation, it will preserve the action
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of Wi (but multiplication by z′ takes Xτ (z) to Xτ (z
′δ(z′)z)). So the orbit

picture in Xτ (z) for two values of z that are congruent modulo the image Zδ

of Z under the homomorphism z′ → z′δ(z′) will be identical. To understand
all possible situations, it will be enough to have z run through a set of
representatives modulo Zδ.

6.4 Proposition. — Each Z-conjugacy class in Xτ has a representative
in Xτ (z) where z belongs to the center Z1 of the derived group of G; one
may even ask that the order of z be a power of two.

Proof. — We may write T = T1.Rad(G), where T1 is the identity component
of the intersection of T with the derived group, and Rad(G) is the identity
component of Z. Recall that we denoted Tτ the group of elements t ∈ T
such that (1 + τ)(t) ∈ Z. But then it is clear that if we write t = t1.z,
with t1 ∈ T1 and z ∈ Rad(G), (1 + τ)(t) is congruent to (1 + τ)(t1) modulo
Zδ, and of course (1 + τ)(t1) ∈ Zδ

1 . Let p be a prime divisor of the the
order of Z1, and let Z1(p) be the corresponding Sylow subgroup. If p is
odd, we have that Z1(p)δ = (Z1(p)d)2 ⊂ Zδ, so we may even arrange that
(1 + τ)(t1) ∈ Z1(2).

6.5 Corollary. — There are only finitely many orbit pictures for the var-
ious Xτ (z) ⊂ X (τ).

6.6 Example. — Consider again the example of SL(n). For the equal
rank case, it is always true that all elements of Z(G) are attained as x2

(because this is obvious for the fundamental torus). And z → z2 is surjective
from Z to Z if and only if n is odd; otherwise there are two cosets for Zδ. So
for the fundamental fiber, we should expect to have either one orbit picture
repeated n times, or two orbit pictures repeated n/2 times each.

When n is odd, this remains true for all other values of τ : there will
always be n identical orbit pictures lying over each τ , isomorphic to the
corresponding picture for the adjoint group. When n is even, things are
more subtle. When m = n/2 is odd, one of the two pictures contains
SU(2m), SU(2m − 2, 2), . . ., SU(m + 1,m − 1), each twice, and the other
SU(2m − 1, 1), . . ., SU(m,m), each twice except the last one. The first set
of forms corresponds to values of x2 that are congruent to zero modulo Zτ ,
and the other ones to those that are congruent to one. Then one sees that
all values in Z are reached on Xτ except when τ is maximally split, where
only SU(m,m) survives, and therefore only the values in Z that are not
in Zδ are reached there (this is apparent already in the elementary case of
SL(2).)
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Also, it is not true in this case that one gets the picture for the adjoint
group in each Xτ (z). The map from Xτ (z) to the corresponding Xτ,adjoint

(only one possible value of z here!) is always two-to-one except for the most
split case; one of the two families maps to one-half of Xτ,adjoint, the other
one to the other half.

One can make a similar analysis when m is even. The main difference
is that here the quasisplit forms are now in the same family as the compact
ones, and therefore correspond to the class of elements with square in Zδ,
instead of the opposite.

For the non-equal rank case, things are simpler, because δ now acts on
Z through inversion, so the group Zδ is either trivial (when n is odd), or has
two elements, ±1 (when n is even.) And Zδ is trivial in all cases. It is not
hard (I hope!) to see that in the even case, both values in Zδ are reached
(the value −1 corresponding to SL(n,R).)

6.7 Example. — To see a case where Z is not finite, consider the case of
GL(2). The main difference with the case of SL(2) is that the fundamental
torus is now complex, which means that T δ(2) = T−δ(2), and therefore the
two sets Xδ(1) and Xδ(−1) are both singletons. Also, of course, Xs is a
singleton, for the non-trivial element s of the Weyl group.

In particular, there are only two strong real forms of GL(2) for this
inner class : the group SU(2).R× generated by SU(2) and real dilations in
GL(2,C), and GL(2,R).

6.8. It turns out that in general there is a very nice description of the action
of Wi on Xτ in terms of the grading of the imaginary roots associated to a
strong involution x ∈ N.δ. Denote grx this grading. Clearly it is unchanged
under conjugation by T ; therefore we may speak of grξ for any ξ ∈ Xτ .
Recall that for each z ∈ Z such that Xτ (z) is non-empty, there is a simply
transitive action of the component group T−τ/T−τ

◦ on Xτ , which we will
denote additively.

6.9 Proposition. — Let ξ ∈ Xτ (z), and let α be an imaginary root for
τ . Then the action of sα on ξ is given by

sα.ξ = ξ + grξ(α)mα

where the action of mα is through its image in T−τ/T−τ
◦ . In particular, the

Weyl group of the root system Φi(0) consisting of the roots that are compact
for ξ is contained in the stabilizer of ξ.
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Proof. — Recall the notation from 5.4. Let x ∈ N.δ be a representative of
x. If α is compact for x, then θx is trivial on Gα, so x and σα commute, and
the action of sα on ξ is indeed trivial. If α is non-compact, we have seen
in 5.5 that we may write x = tα.x′, where x′ commutes with Gα. But it is
clear that σα.tα.σ−1

α = t−1
α = mα.tα, so it follows that sα.ξ = ξ + mα, and

we are done.

6.10. Proposition 6.9 makes it possible to describe each Xτ (z) as a Wi-set,
just from the knowledge of the grading associated to one of its elements. The
map Wi → T−τ/T−τ

◦ defined by w → w.ξ − ξ satisfies an obvious cocycle
condition, and can be readily computed from the actions of the generators.

Moreover it is known (cf. [6] Proposition 6.12 ??) that for every τ , the
grading of the imaginary root system where all simple roots are noncompact
is always allowed (and corresponds to the quasisplit real form.) If one is
willing to allow translations by the full group Tτ/T

−τ
◦ from Proposition 2.4,

this will yield a canonical description of Xτ as a Wi-space for every given
τ . (If one is willing to allow only translations by T−τ , the situation is more
delicate, as it is not always true that every Xτ (z) contains a strong real
form which is quasisplit; this is apparent already in the example of SL(n)
in Example 6.6.)

The cartan command of the Atlas software package prints out the orbit
pictures for a set of representatives τ of W -orbits in I; for each τ , one gets
a classification of the strong real forms of G in the current inner class for
which this Cartan is defined (or more precisely, of those strong real forms
for which x2 belongs to the center of the derived group.) In these printouts,
real form #0 is always a quasisplit one, with a corresponding element of X
labelled as #0 as well.

7 The Tits group

7.1. We will call Tits group, and denote W̃ , the subgroup of G generated
by the elements σα introduced in 5.2. This group has been studied by
Jacques Tits in [5], under the name of extended Coxeter group. It will play
an essential role in the actual construction of the parameter set.

The following theorem contains the properties of the Tits group that we
will need:

7.2 Theorem. — (Tits [5]) (a)The kernel of the natural surjection W̃ →
W is the subgroup of T (2) generated by the elements mα (in particular, it is
an elementary abelian 2-group.) (b) Let the σα, α ∈ Π, be defined using the
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pinning P chosen in 1.1. Then the σα satisfy the braid relations, so that we
get a canonical lifting of W as a subset of W̃ by taking a reduced expression
for w ∈ W and denoting w̃ the corresponding product of the σα.

7.3. The upshot is that any element of W̃ may be canonically written as
n = tσj1 . . . σjr

, where sj1 . . . sjr
is a reduced expression of the image of n in

W , and t is a product of mα’s (say for α simple, in which case the product
is even unique.)

It is not difficult to describe the group generated by the mα. This is
isomorphic to one half the coroot lattice of G modulo the cocharacter lattice
of T (or equivalently, the coroot lattice modulo twice the cocharacter lattice.)
From this, we immediately get the conjugation action action of W on it.

It can happen that some of the mα are trivial, but this is rather rare. It is
enough to deal with the case where the root system is irreducible. Then we
note that the triviality or non-triviality of mα is constant along W -conjugacy
classes of roots. So certainly it is enough to look at simple roots. Also, if
there is a representation of the corresponding three-dimensional subgroup
Gα where mα acts as −1, it can of course not be trivial. In particular, if
there is a root β for which < β,α∨ > is odd, mα is non-trivial. So the only
cases where mα can be trivial is for adjoint A1, and for the short root in
type B2, also in the adjoint case (of course when G is simply connected,
there will always be weights λ with < λ,α∨ >= 1.) Now it is not hard to
check that in those two cases mα is indeed trivial.

7.4. As we will explain in some more detail below (reference??), the main
ingredients for the Kazhdan-Lusztig for real reductive groups are the cross
actions and the Cayley transforms (on the two-sided parameter space to be
defined below.) At the level of one-sided parameters, these may in fact be
defined for each strong real form (i.e., for the image of each G-conjugacy
class.) A slightly larger, but much more manageable, setting is to define
them on X (z) for a given central element z (for which X (z) is non-empty,
of course.)

So the problem is to construct X (z) algorithmically. But this follows
very naturally from what we have done so far. The fundamental fiber Xδ(z)
corresponds to a certain T−δ/T−δ

◦ -orbit in Xδ; we assume that this has been
handed to us. Denote for simplicity δz an element in T.δ such that δ2

z = z.
Then everything we do takes place in W̃ .δz.

A rough sketch of the algorithm is as follows:

(a) maintain a first-in-first-out list of elements τ in I, together with a
strong involution xτ in W̃ .δz representing τ , and a subset of T τ

◦ (2)
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representing a basis of T−τ/T−τ
◦ ≃ T τ

◦ (2)/(T τ
◦ (2) ∩ T−τ

◦ (2)); initialize
this list with τ = δ, xδ = δz , and a basis of T δ

◦ (2)/(T δ
◦ (2) ∩ T−δ

◦ (2)).
Also keep in memory the elements τ that have been put on the list.

(b) while the list is non-empty: take the first element τ off the list. Try
conjugating τ with the various σα, α simple. If we find a new τ , put it
on the list, conjugating the data for τ by σα. Next, look at the Cayley
transforms cα, still for α simple (and imaginary, of course), and for
which there are elements t.xτ for which α is noncompact. Again, see
if sα.τ is new. If yes, put it on the list, and take an t.xτ for which α is
non-compact (this is either all, or half of the t.xτ ); take xsα.τ = σα.t.xτ

in the data for the new group. Also, using the fact that T−sα.τ/T−sα.τ
◦

is the quotient by the two-element subgroup generated by mα of the
kernel in T−τ/T−τ

◦ of the root α, compute a basis for T−τ/T−τ
◦ .

(c) whenever an element τ is put on the list, put the corresponding set of
parameters into a store, that will eventually contain an entry for each
element of X (z).

In practice, the goal would be to obtain a well-defined numbering of the
parameters, and in terms of this numbering, to produce tables represent-
ing the cross-actions of the simple reflections, and the direct and inverse
Cayley transforms in terms of this numbering. One would probably also
want to keep data such as the corresponding root datum involution, the
corresponding grading, . . .

8 The two-sided parameter space and the classifi-

cation of representations

8.1. At long last we are now in a position to describe the parameter space
for actual representations. We note that our one-sided parameter space X
has been constructed entirely in terms of the root datum (X,R,X∨, R∨)
(and our chosen inner class γ.) Therefore we can similarly construct the
one-sided parameter space Y for the dual root datum and the dual inner
class γ∨.

Now we form the restricted product:

Z := X ×I Y

as follows: Z is the set of pairs (ξ, η) ∈ X × Y such that the root datum
involutions τ , τd induced by ξ and η satisfy τd = −τ∨. Our definition of
the dual inner class ensures that this makes sense. The set Z is called the
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two-sided parameter space for G. Just as we did for one-sided parameter
spaces, we may introduce the fiber Zτ for τ ∈ I, and Z(z, zd) for z ∈ Z(G),
zd ∈ Z(G∨).

8.2. The two-sided parameter space parametrizes representations of strong
real forms of G, with regular integral character, up to translation by the
character lattice of T . Roughly speaking, here is how it goes (here we use
the actual dual group G∨.) (this requires more work!)

Take a pair of strong involutions (x, y) in N.δ × N∨.δ∨, lying over a
certain root datum involution τ . We may identify t∨ = Lie(T∨) with the
dual of t = Lie(T ). Then the center of G∨ may be canonically identified
with P/X∗(T ), where P is the group of integral weights (which has a vector
component when G is not semisimple.) Therefore, the square of y allows
us to pick an integral infinitesimal character up to translation, which we
may arrange to be non-singular. Now the datum of x allows us to recover
a strong real form of G, together with a θx-stable Cartan H and a chamber
in h∗, up to W (K,H)-conjugacy. Together with the chosen infinitesimal
character, this gives us an element λ of h∗. Now the last remaining question
to obtain a character of H is to extend the character defined by λ on Hθx

◦

to all of Hθx . (here some shifting should be done that I’m not entirely clear
about). After translation, back to T , this corresponds to finding an element
of the dual group of T τ (2), whose restriction to T τ (2)∩ T−τ

◦ (2) is given (by
the square of y.) This should correspond exactly to the choice of y with the
given square.

8.3. So the conclusion is as follows: the two-sided parameter space is in (1, 1)
correspondence with the disjoint union over all possible strong real forms
of G, and all possible translation classes of regular integral infinitesimal
characters, of the set of irreducible (g,Kx)-modules for that real form and
with that infinitesimal character.

As we will see in 9.1 below, the G∨-conjugation classes in Y correspond
to blocks of representations.

8.4 Example. — Let us do the very simple example of SL(2). Here there
is a single inner class, with two real forms. As we have seen in Example 4.2,
the fundamental fiber has four elements, with three orbits corresponding to
three strong real forms. The other fiber has a single element.

The dual group is PSL(2), which is also the adjoint group. So the one-
sided parameter space for the dual group can be obtained by passing to the
quotient: there are two elements in the fundamental fiber, corresponding to
the two real forms, and one in the other fiber. Going over to −θ∨ amounts
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to reversing the dual picture, and then doing the restricted product yields
a space Z with 4.1 + 1.2 = 6 elements. Four of these six elements corre-
spond to the split real form SL(2,R) (the two discrete series, lying over the
fundamental fiber, and the finite dimensional representation, and the non-
spherical (irreducible) principal series, lying over the other fiber.) The other
two correspond to the two compact strong real forms (a single representa-
tion each.) In this case, there is only one translation class of regular integral
infinitesimal characters, so the picture is consistent with the interpretation
in 8.3.

8.5 Example. — Consider now the example of GL(2), for the inner class
where the radical is split (i.e., the inner class containing GL(2,R).) We
have described the one-sided parameter space X in 6.7. To describe the
other side, one must take care that the dual group is still GL(2), but the
dual inner class is now the one where the radical is compact, i.e., the inner
class containing U(2). Here the fundamental torus is compact, and each
of the parameter sets Ys(1), Ys(−1) contains four elements. Since −1 is
the square of a central element in the dual group, both orbit pictures are
in fact the same: each contains two compact strong real forms and one
quasiplit one. Since the most split torus of the dual group is complex, Yδ(1)
and Yδ(−1) are both singletons. So if we fix an infinitesimal character,
we get five irreducible representations of GL(2,R), one discrete series, two
finite-dimensional ones, and two irreducible principal series : essentially the
combination of the pictures for the two possible infinitesimal characters for
PSL(2,R).

8.6. There is a canonical identification of the Weyl groups of (G,T ) and
(G∨, T∨). Therefore we may consider the diagonal action of W on X ×
Y; practically by definition, this will preserve the restricted product, and
therefore restrict to an action on Z. This action is usually called the cross-
action on two-sided parameters. (here what is missing is to check that this
cross-action translates to the usual cross-action on regular characters of θ-
stable tori.)

Note that the orbits of this action on each fiber Zτ will be the same as
the orbits of the action of W τ × W τ , because as was seen in Proposition
6.2, the W τ -action really amounts to the Wi-action on Xτ , and dually to
the Wr-action on Yτ (the Wr for X becomes the Wi for Y.) So the orbits in
Z are just the products of orbits in X by orbits in Y.

To define the Cayley transform cα on Z, just set

cα(ξ, η) = (cα(ξ), cα(η))
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for ζ = (ξ, η) ∈ Z. Here cα is the inverse Cayley transform. This is not a
function in general; it will be a one-to-two correspondence for those cases
where cα is two-to-one.

8.7 Example. — Consider the case of PSL(2). Here the picture is the
dual picture from the one in Example 8.4. There are still six parameters,
two in the fundamental fiber and four in the other, but only two strong real
forms : PSL(2,R) which is the full group of real points of PSL(2), hence
non-connected, and PSU(2). Now five of the six parameters correspond to
PSL(2,R) : one in the fundamental fiber, the unique discrete series, and
four in the non-fundamental fiber, the two finite-dimensional ones, and two
irreducible principal series. There are two translation classes of infinitesimal
characters, one containing the discrete series and the two finite-dimensional
ones, the other containing the two irreducible principal series.

Now the Cayley transform of the discrete series is going to be the pair
(ζ+, ζ−) consisting of the two finite-dimensional representations.

8.8 Example. — Another very simple example is that of a torus. Let
G = T be a split torus (here the choice of inner class actually fully determines
the real form.) Then δ is inversion. Here Zδ = T (2) has 2r elements, where
r is the rank of the torus, but the image Zδ of T under t → tδ(t) is the
identity, so there is in fact only one possible value for x2, viz. x2 = 1, and
all the corresponding x’es are T -conjugate. Hence X is a singleton.

On the dual side, δ∨ is the identity, so all squares become possible in
the dual torus. Moreover, each Y(zd) has 2r elements. Clearly one sees how
this corresponds to choosing the derivative of a character up to translation
by (the derivatives of) the algebraic characters, and then extending to the
component group of T δ.

In the case of a compact torus, the situation is reversed : there are
infinitely many strong real forms, but just a single infinitesimal character up
to translation : this is clear, as representations of a compact torus correspond
to the elements of X∗(T ).

8.9. (this needs to be expanded and made more precise!) The Cayley trans-
forms and cross-actions are all we need to define the action of the Hecke
algebra of W on the free Z[q1/2, q−1/2]-module generated by Z. Then, we
can define the length function, the order relation, and descent sets, which
will give us all the necessary ingredients to set up the Kazhdan-Lusztig
algorithm.
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9 Duality and blocks

9.1. Both one-sided parameter spaces X and Y are naturally partitioned
according to the strong real forms of G and G∨ respectively. So Z is par-
titioned as well, according to pairs of strong real forms. These classes in
Z are called blocks of representations. As we have seen, cross-actions and
Cayley transforms preserve blocks; hence a block is the natural (and also
the minimal) setting for Kazhdan-Lusztig computations.

In other words: fix a strong real form of G; one could also fix a regular
integral infinitesimal character (up to translation), i.e., an element zd of the
center of G∨. Then the irreducible representations of the given real form,
with the given infinitesimal character, are naturally partitioned into blocks,
the partition being indexed by the strong real forms of G∨ corresponding to
Y(zd).

What is remarkable is that this partition is the same as the one obtained
by the natural definition of block, which corresponds to the smallest equiv-
alence relation for which two representations are equivalent when there is a
non-trivial Ext between them (reference ??).

9.2. Even more beautiful: duality. It is clear from the definitions that
interchanging G and G∨, with their corresponding inner classes, amounts
to interchanging the roles of X and Y (and, in practice, reading the picture
backwards, as the fundamental fiber for Y is at the opposite end from the
fundamental fiber for X .) This has appeared in the comparison of Examples
8.4 and 8.7.

Of course this duality preserves blocks, and can be described one block
at a time. But one can not express it for the full representation theory of
one real form at a time: to describe the representations of one real form of
G, one needs all strong real forms of G∨, and conversely.
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