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Chapter 1

The unitary dual of a real
split semi-simple Lie group

1.1 The Unitarity Problem

Let G be the set of real points of a linear connected reductive group. We denote
by:

- g : the Lie algebra of G

- gC : the complexification of g

- θ : a Cartan involution

- g = k + p : the corresponding Cartan decomposition of g

- K : the maximal compact subgroup of G with Lie algebra k.

A representation (π,H) of G on a Hilbert space is called unitary if H admits a
G-invariant positive definite inner product.

PROBLEM: Classify all irreducible unitary representations of G, up to
unitary equivalence.

By results of Harish-Chandra, this is equivalent to classifying all the unitary
admissible representations of G, up to infinitesimal equivalence. We split this
problem in three parts:

1. Describe all the irreducible admissible representations of G, up to infini-
tesimal equivalence

2. Understand which irreducible admissible representations of G are Her-
mitian, i.e. have a non-degenerate invariant Hermitian form

4



1.1. THE UNITARITY PROBLEM 5

3. Understand which Hermitian irreducible admissible representations are
unitary, i.e. decide whether the non-degenerate invariant Hermitian form
is positive definite.

1.1.1 Irreducible admissible representations

We need to introduce more notations:

- P = MAN : a parabolic subgroup of G

- a : the Lie algebra of A

- aC : its complexification

- (δ, Vδ) : an irreducible tempered unitary representation of M

- ν ∈ a∗C : a linear functional with real part in the open positive Weyl
chamber

- XP (δ ⊗ ν) : the principal series with parameters (P, δ, ν)

- XP (δ ⊗ ν) : the unique Langlands quotient of XP (δ ⊗ ν).

A brief recall: The principal series XP (δ ⊗ ν) is obtained by inducing the rep-
resentation δ ⊗ ν from P to G. It is defined as the representation of G by left
translation on the space of functions:

HP
δ⊗ν = {F : G → V δ : ResK(F ) ∈ L2(K, V δ) and

F (gman) = e−(ν+ρ) log(a)δ(m)−1F (g), ∀man ∈ P = MAN, ∀ g ∈ G}.
When <(ν) is strictly dominant, the principal series XP (δ ⊗ ν) has a unique
irreducible quotient, that we denote by XP (δ⊗ν). It is the quotient of XP (δ⊗ν)
by the Kernel of the intertwining operator

A(P , P, δ, ν) : XP (δ, ν) → XP (δ, ν)

(P is the opposite parabolic). More details are given in chapter D.

Classification

The classification of the irreducible admissible representations of G was given
by Langlands in the early 1970s:

• Every irreducible admissible representation of G is infinitesimally equiva-
lent to a Langlands quotient XP (δ ⊗ ν).

• Two Langlands quotients XP (δ ⊗ ν) and XP ′(δ′ ⊗ ν′) are infinitesimally
equivalent if and only if there exists an element ω of K such that

ωPω−1 = P ′ ω · δ ∼= δ′, ω · ν = ν′.
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1.1.2 Irreducible Hermitian admissible representations

Every irreducible Hermitian admissible representation of G is infinitesimally
equivalent to a Hermitian Langlands quotient.
In 1976, Knapp and Zuckerman have proved that XP (δ ⊗ ν) admits a non-
degenerate invariant Hermitian form if and only if there exists ω ∈ K
satisfying

ωPω−1 = P̄ ω · δ ' δ ω · ν = −ν̄.

This condition follows from the facts that

• XP (δ ⊗ ν) is Hermitian if and only if it is infinitesimally equivalent to its
Hermitian dual

• the Hermitian dual of XP (δ ⊗ ν) is X P̄ (δ ⊗−ν̄).

1.1.3 Unitary irreducible admissible representations

Every unitary irreducible admissible representation of G is infinitesimally equiv-
alent to a unitary Langlands quotient.
Knapp and Zuckerman have proved that every non-degenerate invariant Her-
mitian form on XP (δ⊗ν) is a real multiple of the form induced by the Hermitian
operator

B = δ(ω) ◦R(ω) ◦A(P̄ : P : δ : ν)

from XP (δ⊗ν) to XP (δ⊗−ν̄). So XP (δ⊗ν) is unitary if and only if the form
induced by B is positive semidefinite.

Remark 1. The unitarity problem is reduced to the analytic problem of com-
puting the signature of the Hermitian operator B.

1.2 The signature of the Hermitian operator B

We assume the existence of an element ω of K satisfying1

ωPω−1 = P̄ ω · δ ' δ ω · ν = −ν̄

and we discuss the signature of the Hermitian operator

B : XP (δ ⊗ ν) → XP (δ ⊗−ν̄).

This is a very hard problem. The first reduction consists of computing the
signature separately on each K-type appearing in the principal series.

1This is a necessary condition for the unitarity of the Langlands quotient XP (δ ⊗ ν).



1.2. THE SIGNATURE OF THE HERMITIAN OPERATOR B 7

Reduction to a K-type by K-type calculation. . .

For every K-type (µ, Eµ), consider the Hermitian operator

Rµ(ω, ν) : HomK(Eµ, XP (δ ⊗ ν)) → HomK(Eµ, XP (δ ⊗−ν̄))

defined by applying B to the range. By Frobenius reciprocity:

Rµ(ω, ν) : HomM∩K(Eµ |M∩K , V δ) → HomM∩K(Eµ |M∩K , V δ).

If P is a minimal parabolic subgroup, then M ∩K = M , so we can write

Rµ(ω, ν) : HomM (Eµ |M , V δ) → HomM (Eµ |M , V δ).

Remark 2. In order to solve the unitarity problem, we need to construct the
operator Rµ(ω, ν) for every K-type µ appearing in the principal series.
This is still a complicated issue. Therefore, we make some additional assump-
tions:

- G is split2, in particular SL(n,R), Sp(2n,R), SO(n, n), F4, E6, E7, E8

- P = MAN is a minimal parabolic subgroup of G

- ν is a real character of A.

Then, a rank-one reduction is possible.

A rank-one reduction. . .

If P is a minimal parabolic, we can regard ω as an element of W := NK(a)/M.
The operator Rµ(ω, ν) decomposes into a product of factors according to the de-
composition of ω into a product of simple reflections (as in Gindikin-Karpelevic).
These factors are induced from the corresponding intertwining operators on the
root-SL(2,R)’s.

Root SL(2)’s

For each α ∈ ∆(g, a), choose a map ψα : sl(2,R) → g which commutes with θ,
and satisfies

ψα

( [
0 1
0 0

] )
= Eα, ψα

( [
0 0
1 0

] )
= E−α,

where E±α are the root vectors, and θ(Eα) = −E−α. Then ψα determines a
map

Ψα : SL(2,R) → G

with image Gα, a connected group with Lie algebra isomorphic to sl(2,R).
Denote by

σα := Ψα

( [
0 1
−1 0

] )
, mα := σ2

α,

2G is split if and only if the centralizer of a in k is trivial.
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and let Zα := Eα − E−α ∈ k.
The element Zα generates a Lie algebra kα isomorphic to so(2). The group
Kα = exp(kα) is isomorphic to SO(2). We will refer to Kα as the SO(2)-
subgroup attached to α.

1.2.1 The Gindikin-Karpelevic decomposition of Rµ(ω, ν)

We describe the main steps:

1. Take a minimal decomposition of ω as a product of simple reflections3

ω = sαr
· · · sα2sα1

2. Decompose the operator A(P , P, δ, ν) accordingly:

A(P , P, δ, ν) = A(sαr
)A(sαr−1) · · ·A(sα1).

For all j = 1 . . . r we have set:

A(sαj ) = A(P j , P j−1, δj−1, νj−1) : XP j−1(δj−1, νj−1) → XP j (δj , νj)

with4

P j−1 = (sαj−1 · · · sα2sα1)P (sαj−1 · · · sα2sα1)
−1

δj−1 = (sαj−1 · · · sα2sα1) · δ
νj−1 = (sαj−1 · · · sα2sα1) · ν.

3. When sα is a simple reflection, interpret the Hermitian operator AP (sα)
as an intertwining operator for the rank-one subgroup MGα, and compute
the corresponding operator Rµ(sα). Then

Rµ(ω, ν) = R(sαr )R(sαr−1) · · ·R(sα1).

4. Using the results already known for SL(2, R), compute the various oper-
ators R(sα).5

Remark 3. Rµ(ω, ν) can be decomposed as a product of operators corresponding
to simple reflections sα, and for these operators an explicit formula exists. This
formula depends on the decomposition of Eµ in irreducible Kα-types.
Because the decomposition changes with α, it is very hard to keep track of the
different decompositions when you multiply the various rank-one operators to
obtain Rµ(ω, ν).

To solve the unitarity problem we need a formula to compute R(sα) which
is independent of the decomposition of Eµ in Kα-types. When the K-type is
petite such a formula exists.

Definition. A K-type is called petite, if µ(iZα) = 0,±1,±2,±3.

3Such a decomposition is called minimal if ω has length r.
4For j = 1, set P 0 = P , δ0 = δ, ν0 = ν.
5Details are given in the next chapters.



Chapter 2

The spherical unitary dual

2.1 Spherical representations

We assume that

- G is split

- P = MAN is a minimal parabolic subgroup of G

- δ is the trivial representation of M

- ν is a strictly dominant real character of A

and we discuss the unitarity of the Langlands quotient XP (δ ⊗ ν).

For every K-type µ, we have an intertwining operator

Rµ(ω, ν) : HomM (Eµ |M , V δ) → HomM (Eµ |M , V δ).

Because δ is trivial, we can regard Rµ(ω, ν) as an operator on (E∗
µ)M . There is

a natural representation of the Weyl group on this space, defined by

([σ] · T )(v) = T (µ(σ−1) · v), (2.1)

and when µ is petite, the operator Rµ(ω, ν) depends only on this W -representation.

2.1.1 The operator Rµ(ω, ν)

Decompose Rµ(ω, ν) in operators corresponding to simple reflections, as in
(1.2.1). We need to describe the action of each factor1

Rµ(sα, γ) : HomM (Eµ |M , V δ) = (E∗
µ)M → HomM (Eµ |M , V sα·δ=δ) = (E∗

µ)M .

1Rµ(ω, ν) acts on (E∗µ)M , and so does every factor Rµ(sα, γ).

9
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For this purpose, consider the decomposition of µ in isotypic components of
characters of the SO(2)-subgroup Kα attached to α:

µ |M=
⊕

j∈Z
φj

and write
(E∗

µ)M =
⊕

n∈N
HomM (φ2n + φ−2n, V δ)

for the decomposition of (E∗
µ)M in MKα-invariant subspaces.

The operator Rµ(sα, γ) preserves this decomposition2, and acts on each MKα-
invariant subspace by a scalar:

t
HomM (φ0, Fδ)

t
HomM (φ2 + φ−2, Fδ)

t
Hom(φ4 + φ−4, Fδ)

t . . . . . .

??

1
D

Rµ(sα, γ) : 1

?

d2

? ??

d4

??

d6

t
HomM (φ0, Fδ)

t
HomM (φ2 + φ−2, Fδ)

t
HomM (φ4 + φ−4, Fδ)

t . . . . . .

We have normalized the operator so that it takes the value 1 on a fine K-
type.3 SL(2)-calculations show that:

d2n =
Πn

j=1((2j − 1)− 〈λ, ∨α〉)
Πn

j=1((2j − 1) + 〈λ, ∨α〉)
for every n ≥ 1.

Remark 4. It is clear from the picture that the operator Rµ(sα, γ) depends on
the decomposition of (E∗

µ)M in MKα-invariant subspaces.

2.1.2 When µ is petite. . .

If µ is a petite K-type, the space (E∗
µ)M reduces to

(E∗
µ)M = HomM (φ0, V δ)⊕HomM (φ−2 + φ+2, V δ). (2.2)

We also notice that

HomM (φ0, V δ) ≡ the (+1)-eigenspace of sα

HomM (φ−2 + φ+2, V δ) ≡ the (−1)-eigenspace of sα

in the representation of W on (E∗
µ)M defined in (2.1). So we get:

2Because it is induced by the corresponding intertwining operator for MGα

3The constant D =
π Γ(λ)

2λ−1 Γ
�

λ+1
2

�
Γ
�

λ+1
2

� is real and positive.
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1
D

Rµ(sα, γ)=

(
+1 on the (+1)-eigenspace of sα

1−〈ν, α̌〉
1+〈ν, α̌〉 on the (−1)-eigenspace of sα

t
HomM (φ0, Fδ)

t
HomM (φ2 + φ−2, Fδ)

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡
¡

t
HomM (φ4 + φ−4, Fδ)

t . . . . . .

??

1

?

1−〈λ,∨α〉
1+〈λ,∨α〉

? ??

d4

??

d6

t
HomM (φ0, Fδ)

t
HomM (φ2 + φ−2, Fδ)

t
HomM (φ4 + φ−4, Fδ)

t . . . . . .

⇑
−1 eigenspace

of sα.

⇑
+1 eigenspace

of sα

Remark 5. When µ is petite, each operator Rµ(sα, γ) can be entirely defined
in terms of the representation of the Weyl group on the space of M -fixed vectors.
This makes things much simpler, because there is no need to know the decom-
position of µ in irreducible representations of Kα ' SO(2).

2.2 Relevant K-types

When µ is a petite K-type, the formula for the operator Rµ(ω, ν) coincides with
the formula for the similar operator for a split p-adic group.
To be more precise, results of Barbasch-Moy reduce the problem of the deter-
mination of the Iwahori spherical dual of split p-adic group to the problem of
determining the unitary dual of finite dimensional representations of the cor-
responding affine graded Hecke algebra. In this case, for each representation
τ ∈ Ŵ , there is an operator Rτ (ω, γ) with the same formula as the one for the
real case. A spherical representation X(ν) is unitary if and only if Rτ is positive
definite for all τ.
Work of Barbasch for the classical groups, Ciubotaru for F4, and Barbasch-
Ciubotaru for E6, E7, and E8, determine a set of W -representations, called
relevant with the property that a spherical module X(ν) is unitary, if and only
if Rτ (ω, ν) is positive semidefinite for τ in the relevant set.

PROBLEM:4 Find a set of petite K-types so that the (E∗
µ)M realize all the

relevant W-representations. Call these “the relevant K-types”.

4This problem has been solved by Dan Barbasch.
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If we can solve this problem, then we get powerful necessary conditions for
unitarity in the real case: X(triv.⊗ν) is unitary only if Rµ(ω, ν) is positive
semidefinite for µ in the relevant set.

Conjecturally the spherical unitary dual for a split reductive group should be
independent of whether the field is real or p-adic. The conjecture is true for the
classical groups, so for classical groups, X(triv.⊗ν) is unitary if and only
if Rµ(ω, ν) is positive semidefinite for µ in the relevant set.

Next, we list the relevant W -types. For a list of the corresponding relevant
K-types, see Barbasch’s paper “Relevant and Petite K-types”.

Classical groups

For type An−1 , we have G = SL(n), K = SO(n) and W = Sn.
The Weyl group representations are parameterized by partitions of n. The
relevant W -types correspond to partitions in at most two parts:

(n− k, k).

For types Bn, and Cn, the Weyl group W consists of permutations and sign
changes of of the coordinates of Rn, and the relevant W -types are

(n− k, k)× (0), (n− k)× (k).

Similarly for Dn.

Exceptional Groups

The relevant W representations are

F4 11, 23, 81, 42, 91,

E6 1p, 6p, 20p, 30p, 15q,

E7 1a, 7′a, 27a, 56′a, 21′b, 35b, 105b,

E8 1x, 8z, 35x, 50x, 84x, 112z, 400z, 300x, 210x.

The notation is as in Kondo’s and Frame’s work.



Chapter 3

Non-spherical
representations

3.1 What goes wrong?

We assume that

- G is split

- P = MAN is a minimal parabolic subgroup of G

- ν is a strictly dominant real character of A

and we discuss the unitarity of the Langlands quotient XP (δ ⊗ ν), when δ is a
non-trivial representation of M .

If we try to apply the same machinery used in the spherical case, we meet
two obstacles:

1. The Hermitian operator Rµ(ω, ν) acts on the space HomM (E |µ, V δ), and
when δ is non-trivial this space does not carry a representation of the
Weyl group. Hence, we can no longer describe the intertwining
operators on petite K-types in terms of representations of W .

2. In the classical case, the factorization of Rµ(ω, ν) as a product of operators
corresponding to simple reflections is “easy” to carry out, at least for petite
K-types, because there exists a very explicit formula for each factor:

• Every Rµ(sα, γ) is an endomorphism of HomM (E |µ, V δ)
• Rµ(sα, γ) preserves the decomposition of HomM (E |µ, V δ) in MKα-

invariant subspaces1

HomM (E |µ, V δ) =
⊕

n∈N
HomM (φn + φ−n, V δ)

1We assume µ |Kα=
L

n∈Z φn.

13
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• Rµ(sα, γ) acts on each HomM (φn + φ−n, V δ) by a scalar.

The very starting starting point of this construction fails in the non-
spherical case: sometimes, when δ is non-trivial, Rµ(sα, γ) is not
an endomorphism of HomM (E |µ, V δ).2

Overcoming the first obstacle. . .

In order to overcome the first obstacle, we introduce two important subgroups
of W : the stabilizer of δ, W δ, and the Weyl group of the good co-roots, W 0

δ .

There is a natural action of the Weyl group W = NK(a)
ZK(a) = M ′

M on M̂ , given
by:

([σ] · δ)(m) ≡ δ(σ−1mσ)

for all σ ∈ M ′, δ ∈ M̂ and m ∈ M .
Fix an irreducible representation δ of M . The stabilizer of δ in W is the set of
all Weyl group elements that stabilize the equivalence class of δ:

StW (δ) ≡ W δ ≡ {w ∈ W : w · δ ' δ}.3

Next, we define W 0
δ . For every root β, mβ = σ2

β is a central element of M of
order two, so δ(mβ) is equal to plus or minus the identity. A root β in ∆(g, a)
is called a good root for δ if δ(mβ) = +Id. The set of good co-roots

∨∆δ = {β ∈ ∨∆: δ(mβ) = +Id}

forms a root system. We define W 0
δ to be the Weyl group of ∨∆δ.

It is a normal subgroup of W δ, and the quotient

Rδ =
W δ

W 0
δ

is called “the R-group of δ”. When G is split, Rδ is either {1}, or Z2 or Z2×Z2.

More details on W δ and W 0
δ can be found in chapter A. Chapter B contains

many examples, and chapter C describes Rδ as a subgroup of the Dynkin dia-
gram R-group.

The role played by the Weyl group of the good co-roots in the study of non-
spherical representations is analogous to the one played by the Weyl group in
the study of spherical representations. Indeed, the group W 0

δ acts on the space
HomM (Eµ, V δ)

Ψ̃µ[σ] · T = T ◦ µ(σ−1) (3.1)

2More precisely, Rµ(sα, γ) is an endomorphism of HomM (E |µ, V δ) only is the reflection
sα belongs to the stabilizer of δ.

3If G is a classical group, then M is abelian and w ∈ W δ ⇔ w · δ = δ.
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and sometimes the construction of the operator Rµ(ω, ν) depends only on this
representation.
For spherical representations, this happens exactly when the K-type µ is petite
(of level at most 3). For non-spherical representations there are stricter con-
ditions. If the decomposition of ω into simple reflections (of W ) involves only
elements in the stabilizer of δ, then it is enough to assume that µ is petite of
level at most 2, and that ω lies in W 0

δ . 4

3.2 The operator Rµ(sα, γ)

The operator

Rµ(sα, γ) : HomM (Eµ, V δ) → HomM (Eµ, V sα·δ)

is an endomorphism of HomM (Eµ, V δ) if and only if sα stabilizes δ. To describe
its action on HomM (Eµ, V δ), we need to know whether the root α is good or
bad for δ.

When α is a good root, the operator Rµ(sα, γ) behaves just like in the spherical
case: it is an endomorphism of

HomM (Eµ |M , V δ) =
⊕

n∈N
HomM (φ2n + φ−2n, V δ)

and acts on each of these MKα-invariant subspaces by a scalar:

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

t
Hom(φ4 + φ−4, V δ)

t . . . . . .

??

Rµ(sα, γ) : Dd0

?

Dd2

? ??

Dd4

??

Dd6

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

t
HomM (φ4 + φ−4, V δ)

t . . . . . .

We have set:

D =
π Γ(λ)

2λ−1 Γ
(

λ+1
2

)
Γ

(
λ+1

2

) ,

d0 = 1 and

d2n =
Πn

j=1((2j − 1)− 〈λ, ∨α〉)
Πn

j=1((2j − 1) + 〈λ, ∨α〉)
4In general, we need some extra conditions that guarantee the existence of a matching

between the intertwining operator Rµ(ω, ν) for G and the intertwining operator Rµ(ω, ν) for
the split group associated to ∆0

δ . These operators may be different, because if you regard ω
as an element of W 0

δ , then you obtain a different minimal decomposition for ω, and of course
a different Gindikin-Karpelevic decomposition for Rµ(ω, nu).
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for all n ≥ 1.

When α is a bad root, the reflection sα does not necessarily stabilize δ.
Hence the domain and codomain of the operator

Rµ(sα, γ) : HomM (Eµ, V δ) → HomM (Eµ, V sα·δ)

may be different.
The decomposition of both HomM (Eµ, V δ) and HomM (Eµ, V sα·δ) in MKα-
invariant subspaces involves only odd characters. The operator Rµ(sα, γ) pre-
serves this decomposition, and carries

HomM (φ2n+1 + φ−2n−1, V δ) → HomM (φ2n+1 + φ−2n−1, V sα·δ)

for every n ≥ 0. If T belongs to HomM (φ2n+1 + φ−2n−1, V δ), its image via
Rµ(sα, γ) is the mapping

φ2n+1 + φ−2n−1 → V sα·δ, (v+ + v−) 7→ D′d2n+1 T (v+ − v−). (3.2)

The operator

Ψα : HomM

(
Eµ, V δ

) → HomM

(
Eµ, V sα·δ) , S 7→ S ◦ µ(σ−1

α )

has a similar effect: if T in HomM (φ2n+1 + φ−2n−1, V δ), then

ΨαT (v+ + v−) = −i(−1)nT (v+ − v−).

So we can write

Rµ(sα, γ) |HomM (φ2n+1+φ−2n−1, V δ)= i(−1)nD′d2n+1Ψα = (−1)n(iD′)d2n+1µ(σ−1
α ).

t
HomM (φ1 + φ−1, V δ)

t
HomM (φ3 + φ−3, V δ)

t
Hom(φ5 + φ−5, V δ)

t . . . . . .

??

Rµ(sα, γ)

iD′ : +d1µ(σ−1
α )

?

−d3µ(σ−1
α )

? ??

+d5µ(σ−1
α )

??

−d7µ(σ−1
α )

t
HomM (φ1 + φ−1, V δ)

t
HomM (φ3 + φ−3, V δ)

t
HomM (φ5 + φ−5, V δ)

t . . . . . .

We have set:

iD′ = i
−iπ Γ(λ)

2λ−1 Γ
(

λ
2

)
Γ

(
λ
2 + 1

) ,

d1 = 1, and

d2n+1 =
(2− λ)(4− λ) · · · (2n− λ)
(2 + λ)(4 + λ) · · · (2n + λ)

for all n ≥ 1.
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3.3 K-types of level two

Suppose that the decomposition of ω into simple reflections involves only ele-
ments in the stabilizer of δ, and assume that µ is a petite K-types of level at
most two. Then the intertwining operator

Rµ(ω, ν) : HomM (Eµ, V δ) → HomM (Eµ, V δ)

depends only on the representation5 Ψ̃µ of W δ on HomM (Eµ, V δ). Each factor
Rµ(sα, γ) of the intertwining operator can be constructed in terms of Ψ̃µ, and
this construction is independent of the decomposition of µ in isotypic compo-
nents of Kα-types. We now give the details.

The restriction of µ to the Kα only includes the characters 0, ±1, ±2. Hence

HomM (Eµ, V δ) =

{
HomM (φ0, V δ) + HomM (φ2 + φ−2, V δ) if α is good for δ

HomM (φ−1 + φ1, V δ) if α is bad for δ.

Let’s first look at the case in which α is a good root. Because

HomM (φ0, V δ) ≡ the (+1)-eigenspace of Ψ̃µ(sα)

HomM (φ−2 + φ+2, V δ) ≡ the (−1)-eigenspace of Ψ̃µ(sα)

we obtain the following picture:

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡
¡

t
HomM (φ4 + φ−4, V δ)

t . . . . . .

??

1

?

1−〈λ,∨α〉
1+〈λ,∨α〉

? ??

d4

??

d6

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

t
HomM (φ4 + φ−4, V δ)

t . . . . . .

⇑
−1 eigenspace

of fΨµ(sα).

⇑
+1 eigenspace

of fΨµ(sα)

Rµ(sα, γ)

D
:

Just like in the spherical case, we can write:

Rµ(sα, γ) =

{
D on the (+1)-eigenspace of Ψ̃µ(sα)

D 1−〈γ,∨α〉
1+〈γ,∨α〉 on the (−1)-eigenspace of Ψ̃µ(sα).

5We recall the definition of fΨµ:

fΨµ[σ] · T = T ◦ µ(σ−1)

for all T in HomM (Eµ, V δ), and all [σ] in W δ.
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Now assume that α is bad. It is clear from the picture

t
HomM (φ1 + φ−1, V δ)

t
HomM (φ3 + φ−3, V δ)

t
Hom(φ5 + φ−5, V δ)

t . . . . . .

??

Rµ(sα, γ)

iD′ : +d1µ(σ−1
α )

?

−d3µ(σ−1
α )

? ??

+d5µ(σ−1
α )

??

−d7µ(σ−1
α )

t
HomM (φ1 + φ−1, V δ)

t
HomM (φ3 + φ−3, V δ)

t
HomM (φ5 + φ−5, V δ)

t . . . . . .
¡

¡
¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

that the operator Rµ(sα, γ) simply acts as a multiple of Ψ̃µ(sα):

Rµ(sα, γ) = (−iD′)Ψ̃µ(sα).

3.4 A very special case

Suppose that the decomposition of ω into simple reflections involves only good
roots. This is a very special case, it happens for instance when δ is a genuine
representation of M and G is the double cover of E6 or E8.6

If µ is a petite K-type7, we can define the intertwining operator Rµ(ω, ν) in
terms of the representation Ψ̃µ of W δ on HomM (Eµ, V δ). Actually, since only
good roots are involved, we only need to know the restriction of Ψ̃µ to the the
Weyl group of the good co-roots, W 0

δ .

Because the set of group co-roots forms a root system, there is a real split
group attached to it, say Ǧ.8 Let Ǩ be the corresponding maximal compact
subgroup and let Θ be the representation of Ǩ with the property that W 0

δ acts
on the space of M̌ -fixed vectors in Θ exactly by Ψµ = Ψ̃µ |W 0

δ
:

repr. of W 0
δ on

HomM (Eµ, V δ)
= Ψµ =

repr. of W 0
δ on

HomM̌ (EΘ, V trivial)

The intertwining operators Rµ(ω, ν) for G, and RΘ(ω, ν) for Ǧ have the same
Gindikin-Karpelevic decomposition. All the factors agree, because they only
depend on ψµ, so the full intertwining operators also coincide.

6Because W = W δ = W 0
δ , every simple root is good.

7In this case, µ is allowed to have level three.
8In general, Ǧ is not a subgroup of G.
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Now consider the p-adic split group attached to ∨∆δ, and call it Ȟ. For spheri-
cal principal series, the intertwining operator on petite K-types is independent
on the field, so the operator RΘ(ω, ν) for Ǧ coincides with the p-adic operator
RΨµ for Ȟ. It follows that the operator Rµ(ω, ν) for G also coincides with RΨµ .

The unitarity of a spherical principal series of Ȟ can be detected by look-
ing at the signature of the operator Rτ , for every relevant representation τ
of W (Ȟ) = W 0

δ . If we try to match relevant W 0
δ -representations with petite

K-types of G containing δ, two possibilities can occur:

1. For every relevant W 0
δ -type τ there is a petite K-types of G such that

HomM (Eµ, V δ) = τ, as W 0
δ -representation

2. There is a relevant W 0
δ -type τ̄ that never appears.

Let us discuss the two options separately.

If the matching is complete, we can write:

X(triv.⊗ ν) is not unitary for Ȟ
⇓

Rτ is not positive semi-definite, for some relevant τ

⇓
Rµ(ω, ν) is not positive semi-definite, for some µ

⇓
X(δ ⊗ ν) is not unitary for G

Equivalently,

X(δ ⊗ ν) is unitary for G

⇓
Rµ(ω, ν) is positive semi-definite, for all µ

⇓
Rτ is positive semi-definite, for all relevant τ

⇓
X(triv.⊗ ν) is unitary for Ȟ

If the matching is not complete, then it could happen that the non-spherical
principal series X(δ ⊗ ν) for G is unitary, even if the spherical principal series
X(triv. ⊗ ν) for Ȟ is not unitary. Indeed, the unitarity of X(triv. ⊗ ν) might
be ruled out exactly by the W 0

δ -type that we are unable to match.

Remark 6. When Ǧ is a classical group, the previous considerations apply also
if we replace Ȟ by Ǧ.
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3.5 Generalization. . .

It would be nice to generalize the arguments of the previous section to the case
in which W 0

δ 6= W.

Suppose that µ is a petite K-type and that ω lies in the Weyl group of the
good co-roots. If W 0

δ is not the entire Weyl group, it is very likely that the
decomposition of ω in simple reflections in W is different from the minimal de-
composition of ω as an element of W 0

δ .
Therefore, even if HomM (Eµ, V δ) = τ as W 0

δ -representations, we cannot expect
the operator Rµ(ω, ν) for G to coincide with the p-adic operator Rτ (ν) for Ȟ.9

In order to generalize the argument described in the previous section, we need
the following conditions to be satisfied:

1. For each relevant W 0
δ -type τ , there is a petite K-type µ such that the

representation of W 0
δ on HomM (Eµ, V δ) equals τ .

2. For each pair (µ, τ) as above, the intertwining operators Rµ(ω, ν) for G
and Rτ (ν) for Ȟ coincide. This means that if

ω = sβ1sβ2 · · · sβr

is the minimal decomposition of ω as an element of W 0
δ , and

ω = sα1
1
sα1

2
· · · sα1

n1︸ ︷︷ ︸
sβ1

sα2
1
sα2

2
· · · sα2

n2︸ ︷︷ ︸
sβ2

· sαr
1
sαr

2
· · · sαr

nr︸ ︷︷ ︸
sβr

is the minimal decomposition of ω as an element of W , then you want the
“piece” of Rµ(ω, ν) corresponding to sαj

1
sαj

2
· · · sαj

nj
to match with “the

piece” of Rτ (ν) corresponding to βj .10

9The two operators have different Gindikin-Karpelevic decompositions. Only the factors
that correspond to simple good reflections agree.

10Recall that Rτ (sβj
, γj) acts by 1 on the (+1)-eigenspace of sβj

in τ , and to act by
1−〈∨βj , γj〉
1+〈∨βj , γj〉 on the (−1)-eigenspace.



Appendix A

Good and Bad Roots

A.1 Preliminary remarks

Because G is split, every restricted root β is reduced and every root space gβ is
one-dimensional.
Choose a non-zero element Eβ of gβ that satisfies the normalizing condition1

B(Eβ , θ(Eβ)) = − 2
‖β‖2

with B the Killing form. Then Eβ spans gβ , and θ(Eβ) spans g−β .
Denote by Hβ the unique element of a corresponding to β via the pairing

a ←→ a?, H ←→ B(H, ·)

so that B(H,Hβ) = β(H) for all H in a. The Lie algebra

RHβ ⊕ gβ ⊕ g−β = SpanR(Hβ , Eβ , θ(Eβ))

is isomorphic to sl(2, R). An explicit isomorphism is given by:

(
1 0
0 −1

)
−→ − 2

‖β‖2 Hβ

(
0 1
0 0

)
−→ Eβ

(
0 0
1 0

)
−→ −θ(Eβ).

1This condition determines Eβ up to a sign.

21
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The element Zβ = Eβ + θ(Eβ) is fixed by θ (hence it belongs to k = Lie(K))
and it generates a subalgebra isomorphic to so(2). Set:2

σβ = exp
(π

2
Zβ

)

mβ = σ2
β = exp(πZβ).

Then

• σβ belongs to the normalizer of a in K (= NK(a) = M ′) and it acts on a?

as the root reflection through β

• mβ belongs to the centralizer of a in K (= ZK(a) = M) and has order
two.

Lemma 1. Let β(m) = ±1 denote the scalar by which an element m of M acts
on the root vector Eβ.Then

(a) β(m) = (−β)(m)

(b) Ad(m)Zβ = β(m)Zβ

(c) mσβm−1 = σ
β(m)
β

(d) σβmσ−1
β =





m if β(m) = +1

mβm if β(m) = −1.

Proof. We first show that M acts on the vector Eβ by a scalar. Since the root
space gβ is one-dimensional, it is enough to show that Ad(m)Eβ belongs to gβ ,
for all m in M . This is easy, because

[H, Ad(m)Eβ ] = Ad(m)[Ad(m−1)H, Eβ ] = Ad(m)[H, Eβ ] = β(H)Ad(m)Eβ

for all H in a.
For m in M , define β(m) by the equation Ad(m)Eβ = β(m)Eβ . Because Ad(m)
commutes with the Cartan involution3, we get

Ad(m)E−β = Ad(m)(−θ(Eβ)) = −θ(Ad(m)Eβ) = β(m)E−β

proving that (−β)(m) = β(m), for all m.
Next, we show that the function m 7→ β(m) only takes the values ±1 on M , i.e.
β(m)2 ≡ 1. Let m be any element of M , then

B(Eβ , θ(Eβ)) = B(Ad(m)Eβ , Ad(m)(θ(Eβ))) = β(m)2B(Eβ , θ(Eβ)).
2σβ is defined only up to inverse, but the action of the operator Ad(σβ) on a is completely

determined.
3Let Θ be the global Cartan involution. Being Θ an involutive automorphism of G which

fixes K (hence M), we have

mxm−1 = Θ(mΘ(x)m−1) ∀x ∈ G and m ∈ M.

Differentiating at x = 1 we find that Ad(m) = θ Ad(m)θ, for all m in M . The results follows
from the fact that also θ is an involution.
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The scalar B(Eβ , θ(Eβ)) = − 2
‖β‖2 is non-zero, so the claim follows.

Part (b) is trivial:

Ad(m)Zβ = Ad(m)(Eβ − E−β) = β(m)Eβ − (−β)(m)E−β = β(m)Zβ .

By exponentiating, we find:

m exp(tZβ)m−1 = exp(t Ad(m)Zβ) = exp(tβ(m)Zβ) = exp(tZβ)β(m).

In particular, for t = π
2 , we get:

mσβm−1 = σ
β(m)
β

which is the claim in part (c). Finally,

σβmσ−1
β = σβ(mσβm−1)−1m = σβσ

−β(m)
β m =





m if β(m) = +1

mβm if β(m) = −1.

The proof of the lemma is now complete.

Along the lines we have shown that β(m) = ±1 for every m in M . When
m = mα = exp(πZα) for some root α, we can be more specific:4

β(mα) = (−1)
2

‖α‖2 〈α, β〉 = (−1)〈
∨α, β〉. (A.1)

A.2 The action of W on M̂

In this section we define an action of the Weyl group

W = W (G,A) =
NK(a)
ZK(a)

=
M ′

M

on the set of equivalence classes of irreducible representations of M . The first
step is to define an action of M ′ = NK(a) on M̂ .
For σ ∈ M ′, δ ∈ M̂ and m ∈ M , set:

(σ · δ)(m) ≡ δ(σ−1mσ). (A.2)

It is easy to check that

• σ · δ is a well defined representation of M

• σ · δ is irreducible, because δ is such

• (σ1σ2) · δ = σ1 · (σ2 · δ) for all σ1, σ2 in M ′, and 1 · δ = δ

4The proof of this formula uses some standard results from the representation theory of
SL(2,C) and the fact that, because G is split, every restricted root is the restriction to a of
one (and only one) root in ∆(gC0 , aC).
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• σ · δ ' σ · δ′ if δ ' δ′.

Therefore equation (A.2) gives a well defined action of M ′ on M̂ . Next we
observe that the group M acts trivially: if m1 belongs to M then

(m1 · δ)(m) = δ(m−1
1 mm1) = δ(m1)−1δ(m)δ(m1) (A.3)

for all m in M , so (m1 · δ) is equivalent to δ.5

It follows that the action of M ′ on M̂ descends to an action of W = M ′/M on
the same space. If w belongs to W and σ is any representative of w in M ′, then

(w · δ)(m) ≡ δ(σ−1mσ). (A.4)

One final remark. If G is semisimple (hence connected), the Weyl group W =
W (G,A) = M ′/M coincides with the Weyl group of the restricted root system
∆(g, a). We should therefore clarify what we mean by a representative of an
element τ of W (∆(g, a)) inside M ′.
If τ : a? → a? belongs to W (∆(g, a)) and σ belongs to M ′, we say that σ
represents τ if the restriction to a of the adjoint map

Ad(σ) : a → a

coincides with the dual map to τ . Namely

(τ · T )(H) = T (Ad(σ−1)H)

for all H in a and T in a?.

A.3 The stabilizer of δ in W

Fix an irreducible representation δ of M . The stabilizer of δ in W consists of
all the elements of the Weyl group that stabilize the equivalence class of δ (with
respect to the action of W on M̂ defined above):

StW (δ) ≡ W δ ≡ {w ∈ W : w · δ ' δ}.

When M is abelian, every irreducible representation of M is one-dimensional
and we can say that

w ∈ W δ ⇔ w · δ = δ.

It’s easy to check that W δ is a subgroup of W , and its index equals the cardi-
nality of the W -orbit of the equivalence class of δ.
How do we check whether a Weyl group element w belongs the stabilizer of δ?
Let us consider the case in which w is a root reflection.
If w = sβ = [σβ ] then

(w · δ)(m) = δ(σ−1
β mσβ) = δ(σ−1

β (mσβm−1)m) = δ(σ−1
β σ

β(m)
β m) =

5Equation (A.3) exhibits δ(m1) as an intertwining operator between δ and (m1 · δ).
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=





δ(m) if β(m) = +1

δ(mβ)δ(m) if β(m) = −1.

This shows, in particular, that W δ contains sβ for every β such that δ(mβ) =
1. These reflections generate a very special subgroup of W δ, that will discuss
shortly.

Remark. For every root β, the map δ(mβ) is either plus or minus the identity.

Proof. Because mβ has order two, δ(mβ)2 is equal to the identity. So, in order
to conclude that δ(mβ) = ±Id, it is enough to prove that δ(mβ) is a scalar.
This result will follow by Shur’s lemma6 once we show that δ(mβ) is a self-
intertwining operator for δ. By lemma (1),

mβmm−1
β = σβ(σβmσ−1

β )σ−1
β = σβmσ−1

β = m

for all m in M such that β(m) = +1. Similarly, if β(m) = −1, then

mβmm−1
β = σβ(σβmσ−1

β )σ−1
β = σβ(mβm)σ−1

β =

= mβ(σβmσ−1
β ) = mβ(mβm) = m.

This shows that every mβ is central in M , so δ(mβ) is central in δ(M).

A.4 The set of good co-roots

Let δ be an irreducible representation of M . A root β in ∆(g, a) is called a good
root for δ if δ(mβ) = +Id.

Definition. The set

∨∆δ = {β ∈ ∨∆: δ(mβ) = +Id}

is called the set of good co-roots.

It follows from previous considerations that the stabilizer of δ contains the
reflections through good roots.
The main properties of ∨∆δ are described in the following lemma.

Lemma 2. Let δ be an irreducible representation of M . Then

(a) ∨∆δ is a root system

(b) If the sum of two good co-roots is a co-root, then it is a good co-root.

(c) If the sum of two bad co-roots is a co-root, then it is a good co-root.

6Because M is finite, the irreducible representation δ is also finite-dimensional.
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Proof. Because ∨∆δ is included in ∨∆, we only need to prove that it is closed
under reflection. Let ∨α and ∨β be good co-roots, i.e. assume that

δ(mα) = δ(mβ) = +Id.

We can write:
δ(msβ(α)) = δ(σβmασ−1

β ) = (s−1
β · δ)(mα).

By assumption, β is a good root, so sβ (together with its inverse) stabilizes the
equivalence class of δ. This gives:7.

(s−1
β · δ)(mα) = T ◦ δ(mα) ◦ T−1 = T ◦ (+Id) ◦ T−1 = +Id.

Hence sβ(α) is a good root, and s∨β(∨α) = ∨sβ(α) is a good co-root.
Parts (b) and (c) of the lemma follow from the fact that if ∨α, ∨β and ∨γ are
co-roots and

∨γ =∨ α +∨ β (A.5)

then mγ = mα ·mβ , and of course

δ(mγ) = δ(mα) · δ(mβ).

For brevity reasons, we only sketch the proof of this fact. Without loss of
generality, we can assume that ‖α‖ ≤ ‖β‖. Because the restricted roots for a
split group form a reduced root system, there are severe limits to the possible
angles between pairs of roots. Taking (A.5) into account, we see that only two
possibilities can occur:

(i) 〈∨α, β〉 = −1

(ii) 〈∨β, γ〉 = +1.

Condition (i) implies that sβ(α) = γ and that8

β(mα) = (−1)〈
∨α,β〉 = (−1)−1 = −1

Then, by lemma 1,

mγ = msβ(α) = σβmασ−1
β = mβmα = mαmβ .

After re-naming the roots, we can use this result to show that

mα = m−βmγ

if case (ii) holds. Then, because m−β = mβ and m2
β = 1, we also get:

mγ = mβmα = mαmβ .

7Call T the intertwining operator between δ and s−1
β · δ.

8By equation (A.1).
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A.5 The Weyl group of the good co-roots

Let δ be an irreducible representation of M , and let ∨∆δ be the root system of
good co-roots. Define W 0

δ to be the Weyl group of ∨∆δ.
It is a subgroup of

W (∨∆(g, a)) = W (∆(g, a)) = W

but not necessarily Levi. For instance, for E8 the Weyl group of the good co-
roots can be of type E8, D8 or E7×A1.
It is also a subgroup of W δ, because reflections through good roots stabilize the
equivalence class of δ. We can say more:

Remark. W 0
δ is a normal subgroup of W δ.

Proof. It is enough to prove that

wsαw−1 = sw(α) ∈ W 0
δ

for all w in W δ and α in ∆δ. This follows easily from the fact that w(α) is a
good root:

δ(mw(α)) = δ(σmασ−1) = (w−1·δ)(mα) = T◦δ(mα)◦T−1 = T◦(+Id)◦T−1 = +Id.

We have denoted by σ a representative for w in M ′ = NK(a), and by T an
intertwining operator between δ and w−1 · δ.

A.6 The R-group Rδ

Let δ be an irreducible representation of M . The Weyl group of the good co-
roots W 0

δ is a normal subgroup of the stabilizer of δ, so the quotient

Rδ =
W δ

W 0
δ

is well defined. We call this quotient “the R-group of δ”.

Lemma 3. Let δ be an irreducible representation of M and let Rδ be the R-
group of δ. Then

(a) Rδ is a finite group

(b) Every element of Rδ has order two

(c) Rδ is an abelian group.

We will only sketch the proof of this lemma, for brevity reasons.
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Proof. Part (c) is an immediate consequence of (b); parts (a) and (b) follow from
the fact that Rδ is isomorphic to the group

Rc
δ = {w ∈ W δ : w(∨∆+

δ ) = ∨∆+
δ }. (A.6)

We can regard Rc
δ as the stabilizer of ρδ (the semi-sum of the positive good co-

roots) inside W . Hence, by Chevalley’s lemma, Rc
δ is generated by reflections

through simple co-roots orthogonal to ρδ.
The set of all the co-roots orthogonal to ρδ forms a root-system, that we denote
by ∆S . It can be shown that ∆S consists of bad strongly orthogonal9 simple
roots, together with their negatives. Reflections through simply orthogonal
roots commute, so the Weyl group of ∆S is abelian, and every element has order
two. By construction, Rc

δ is included in W (∆S) so it has the same properties.

Lemma 4. Let δ be an irreducible representation of M . The stabilizer of δ is
the semidirect product of the Weyl group of the good co-roots and the group Rc

δ

defined in (A.6):
W δ = W 0

δ oRc
δ.

In this decomposition W 0
δ is normal, and the quotient W δ/W 0

δ is isomorphic to
Rc

δ, hence to R-group Rδ.

Lemma 5. If G is connected, semi-simple and has a complexification, then M
is a finite abelian group and is generated by the mαs. It follows that

W δ = {w ∈ W : w(∨∆δ) = ∨∆δ}

Rc
δ = {w ∈ W : w(∨∆+

δ ) = ∨∆+
δ }.

for every irreducible representation δ of M .

9The roots α and β are said to be strongly orthogonal if they are orthogonal, and neither
α + β nor α− β is a root.
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Examples of R-groups· · ·

B.1 The example of SL(n, R)

The data for SL(n, R)

We briefly recall the data for the group SL(n, R) and fix the notations that we
will be using throughout the section.

• G = SL(n, R)

• K = SO(n)

• g0 = sl(n, R) = a0 ⊕α∈∆ (g0)α, with

a0 = { diagonal matrices with trace 0}
∆ = {εi − εj : i, j = 1 . . . n, i 6= j}
∆+ = {εi − εj : i, j = 1 . . . n, i < j}

where for each l = 1 . . . n, we have denoted by εl the linear functional

εl : a0 → R, diag(h1, h2, . . . , hn) 7→ hl

• A = {diagonal matrices, with positive entries and det. 1}
• M =

{
diag (c1, c2, . . . , cn) : cj = ±1, Πn

j=1cj = +1
} ' Zn−1

2

• M̂ = {δS : S ⊂ {1, . . . , n} s.t. | S |< [
n
2

]}, with

δS : diag (c1, c2, . . . , cn) 7→ Πj∈S cj .

For all subsets S of {1, . . . , n}, δS is a well defined representation of M .
We notice that1 Πj∈S cj = Πj∈(SC ) cj , so δS is equivalent to δSC , and we
obtain a total of 2n−1 =| M | inequivalent representations.

• The Weyl group W acts as the group of all permutations of the set
{ε1, ε2 . . . εn}, so W is isomorphic to the symmetric group Sn.

1Because every element of M has determinant one.

29
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The good roots for δS

When S is the empty set, δS is the trivial representation of M and all the roots
are good.
Assume that S = {j1, j2, . . . , jp} ⊂ {1, . . . , n}, with 1 < p ≤ [

n
2

]
. To identify

the good roots for δS , we need to construct the element mα for every positive
restricted root α, and to evaluate δS at mα.
Set α = εi − εj , with i < j. Then

Hα = diag(d1, d2, . . . , dn)

with di = −dj = 1 and dl = 0 otherwise. Therefore

mα = exp
(

2πi

‖α‖2 Hα

)
= diag(λ1, λ2, . . . , λn, λ−1

1 , λ−1
2 , . . . , λ−1

n )

with λi = λj = −1 and λl = +1 otherwise. We notice that

δS(mεi−εj ) =

{
+1, if either {i, j} ⊆ S or {i, j} ⊆ SC

−1, otherwise.

So εi − εj is a good root if and only if both indices i and j lie in S, or none of
them does. We obtain:

∆δS
= {±(εi − εj)}i<j, i,j∈S t {±(εi − εj)}i<j, i,j∈SC

and
∨∆δS

= {±(εi − εj)}i<j, i,j∈S t {±(εi − εj)}i<j, i,j∈SC .

Remark. It is a root system of type Ap−1 ×Aq−1, with p = #S and q = #SC .

The Weyl group of the good co-roots for δS

If p = #S = 1, then ∨∆δS
= Ap−1 ×Aq−1 and

W 0
δS

= W (Ap−1)×W (Aq−1) ' Sp × Sq .

We notice that W 0
δS

acts on the set {ε1, ε2 . . . εn} by

- permuting the εis, with i in S

- permuting the εjs, with j in SC .

It is a subgroup of W of order p!q! and index [W : W 0
δS

] = n!
p!q! =

(
n
p

)
.

If S is the empty set, then ∆δS
= ∆ and of course W 0

δS
= W (it has order

n! and index 1).
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The stabilizer of the δS

Because G = SL(n) is connected, semisimple and has a complexification, we
can identify W δS with the set of of Weyl group elements preserving the good
roots for δS .2

If S is the empty set, then every root is good and W δS = W . If S is not
empty, then we must look for Weyl group elements that stabilize the set:

∆δS
= {±(εi − εj)}i<j, i,j∈S t {±(εi − εj)}i<j, i,j∈SC .

It is not hard to see that

• ∆δS
is stable under any permutation of the set {εi : i ∈ S}, as well as any

permutation of the set {εj : j ∈ SC}
• If p 6= n

2 , there are no other Weyl group elements that preserve ∆δS

• If p = n
2 (and n is of course even), then there are other Weyl group

elements that preserve ∆δS
, namely all the permutations of the form:

π = (i1 j1)(i2 j2) · · · (in
2

jn
2
)

with i1, i2, . . . in
2

in S and j1, j2, . . . jn
2

in SC .
WLOG we can assume that n = 2m, and that S = {1, 2, . . . , m}. Then
any permutation π as above can be decomposed as a product σ2π̃σ1, with:

¦ σ1 ∈ S{1,..., m}
¦ π̃ = (1 m + 1)(2 m + 2) · · · (mn)

¦ σ2 ∈ S{m+1,..., n} .

It follows that π̃ is a generator for the R-group, of order two.

Here is a synopsis of the results: if 0 < p 6= n
2 , then

W δS = W (Ap−1)×W (Aq−1) = Wδ0
S

.

2General remark: If G is a connected semisimple Lie group and has a complexification GC,
then the group M is generated by M0 (the identity component of M) and by the elements
{mα}α real.

3 If G is also split, then M is discrete (so M0 is trivial) and every root is real, so
M is generated by all the mα’s. We can therefore write:

W δ = {w ∈ W : (w · δ)(m) = δ(m) ∀m ∈ M}

= {w ∈ W : (w · δ)(mα) = δ(mα) ∀α ∈ ∆}

= {w ∈ W : δ(mw·α) = δ(mα) ∀α ∈ ∆}

= {w ∈ W : w preserves ∆δ}.
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If p = n
2 (and n is even), then

W δS = (W (Ap−1)×W (Aq−1))n Z2 = Wδ0
S
n Z2 .

Remark. W 0
δS

is a (normal) subgroup of W δS of index 1 if p 6= n
2 , and index 2

if p = n
2 (and n is even).

The R-group

By definition, the R-group RδS
is the quotient W δS /W 0

δS
. It follows from the

previous considerations that:

- If S is the empty set, then W 0
δS

= W δS = W and the R-group RδS
is trivial.

- If 0 < #S 6= n
2 , then W 0

δS
= W δS = W (Ap−1) × W (Aq−1) and again the

R-group RδS is trivial. We have set p = #S and q = n− p.

- If #S = n
2 , then RδS has order two and is isomorphic to Z2. We can pick the

permutation π̃ as a generator.

B.2 The example of SP (2n, R)

The data for SP (2n, R)

• G = SP (2n, R)

• K =
{(

A −C
C A

)
∈ SL(2n,R) : AAT + CCT = I, ACT − CAT = O, det(k) = 1

}

We notice that K is isomorphic to U(n) via the mapping
(

A −C
C A

)
7→ A + i C.

• g0 = sp(2n, R) = a0 ⊕α∈∆ (g0)α, with

a0 =
{(

H O
O −H

)
: H diagonal matrix

}

∆ = {±εi ± εj : i, j = 1 . . . n, i < j} t {±2εl : l = 1 . . . n}
∆+ = {εi ± εj : i, j = 1 . . . n, i < j} t {2εl : l = 1 . . . n}

where for each l = 1 . . . n, we have denoted by εl the linear functional

εl : a0 → R, diag(h1, h2, . . . , hn,−h1, −h2, . . . , −hn) 7→ hl

• A =
{(

D O
O D−1

)
: D diagonal matrix, with positive entries

}
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• M =
{(

Λ O
O Λ

)
: Λ diagonal matrix, with entries ± 1

}
' Zn

2

• M̂ = {δS : S ⊂ {1, . . . , n}, with

δS : diag (λ1, λ2, . . . , λn, λ1, λ2, . . . , λn) 7→ Πj∈Sλj .

For all subsets S of {1, . . . , n}, δS is a well defined representation of
M . Because there are no equivalences, we obtain a total of 2n =| M |
(inequivalent) representations.

• The Weyl group W acts as the group of all permutations and sign changes
of the set {ε1, ε2 . . . εn}, so W is isomorphic to the semidirect product of
Zn

2 and Sn (with Sn acting on Zn
2 ).

The good roots for δS: ∆δS

When S is the empty set, δS is the trivial representation of M and all the roots
are good. So it is enough to consider the case S = {j1, j2, . . . , jp} ⊂ {1, . . . , n},
with p > 1.
To identify the good roots for δS , we need to construct the element mα for every
positive restricted root α, and to evaluate δS at mα.4

• If α = εi + εj , then

Hα = diag(d1, d2, . . . , dn, −d1, −d2, . . . ,−dn)

with di = dj = 1/2 and dl = 0 otherwise. Therefore

mα = exp
(

2πi

‖α‖2 Hα

)
= diag(λ1, λ2, . . . , λn, λ−1

1 , λ−1
2 , . . . , λ−1

n )

with λi = λj = −1 and λl = +1 otherwise. We notice that

δS(mεi+εj ) =

{
+1, if either {i, j} ⊆ S or {i, j} ⊆ SC

−1, otherwise.

So εi + εj is a good root if and only if both indices i and j lie in S, or none
of them does.

4By definition, a root α is good for δS if and only if δS(mα) = 1. Recall that if G has a
complexification, and α is a real root, we can construct mα by the formula:

mα = exp

�
2πi

‖α‖2 Hα

�
.

For details, please refer to Knapp’s book “Lie groups beyond an introduction”, chapter seven,
section 8.
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• If α = εi − εj , then

Hα = diag(d1, d2, . . . , dn, −d1, −d2, . . . ,−dn)

with di = −dj = 1/2 and dl = 0 otherwise, and again

mα = diag(λ1, λ2, . . . , λn, λ−1
1 , λ−1

2 , . . . , λ−1
n )

with λi = λj = −1 and λl = +1 otherwise. Because mεi−εj
= mεi+εj

, we
deduce that εi − εj is a good root if and only if εi + εj is a good root.

• Finally, if α = 2εk, then

Hα = diag(d1, d2, . . . , dn, −d1, −d2, . . . ,−dn)

with dk = 1 and dl = 0 otherwise. Therefore

mα = exp
(

2πi

‖α‖2 Hα

)
= diag(λ1, λ2, . . . , λn, λ−1

1 , λ−1
2 , . . . , λ−1

n )

with λk = −1 and λl = +1 otherwise. We notice that

δS(m2εk
) =

{
+1, if k ∈ SC

−1, if k ∈ S.

Therefore 2εk is a good root if and only if k is not in S.

We conclude that for every not-empty S ⊂ {1, . . . , n}, the set of good roots

∆δS
=

({±εi ± εj}i 6=j, i,j∈SC t {±2εk}k∈SC

) t {±εi ± εj}i 6=j, i,j∈S .

is of type Cq ×Dp. The set of good co-roots

∨∆δS =
({±εi ± εj}i 6=j, i,j∈SC t {±εk}k∈SC

) t {±εi ± εj}i 6=j, i,j∈S

is a root system of type Bq ×Dp. Here p = #S and q = #SC = n− p.

If S is the empty set, then ∨∆δS = ∨∆ (of type Bn).

The Weyl group of the good co-roots for δS: W 0
δS

If p = #S = 1, then ∨∆δS = Bq×Dp and W 0
δS

= W (Bq)×W (Dp) = W (Cq)×W (Dp) .
It has order

| W 0
δS
|=| W (Cq) | · | W (Dp) |= (2qq!)(2p−1p!) = 2n−1q!p!

and index

[W : W 0
δS

] =
2nn!

2n−1q!p!
= 2

(
n
p

)
.

W 0
δS

acts on the set {ε1, ε2 . . . εn} by
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- permuting the εis, with i in S

- permuting the εjs, with j in SC

- changing sign to an even number of εis, with i in S

- changing sign to an arbitrary number of εjs, with j in SC .

If S is the empty set, then ∨∆δS
= ∨∆ and of course W 0

δS
= W (it has order

2nn! and index 1).

The stabilizer of the δS: W δS

Because G = Sp(2n) is connected, semisimple and has a complexification, we
can identify W δS with the set of of Weyl group elements preserving the good
roots for δS .

If S is the empty set, then every root is good and W δS = W . The case S 6= ∅
is more interesting, indeed we must look for Weyl group elements that stabilize
the set:

∆δS
=

({±εi ± εj}i6=j, i,j∈SC t {±2εk}k∈SC

) t {±εi ± εj}i 6=j, i,j∈S .

It is not hard to see that

• ∆δS is stable under the following operations

- all permutations and sign changes of the set {εi : i ∈ S}
- all permutations and sign changes of the set {εj : j ∈ SC}.

• There are no other Weyl group elements that preserve the set ∆δS
.

Therefore:
WδS

= W (Cq)×W (Cp) .

This group has order

| W δS |=| W (Cq) | · | W (Cp) |= (2qq!)(2pp!) = 2nq!p!

and index

[W : W δS ] =
2nn!
2nq!p!

=
(

n
p

)
.

Remark. W 0
δS

is a (normal) subgroup of W δS of index 2.



36 APPENDIX B. EXAMPLES OF R-GROUPS· · ·

The R-group

By definition, the R-group RδS
is the quotient W δS /Wδ0

S
. It follows from the

previous considerations that:

- If S is the empty set, then W 0
δS

= W δS = W and the R-group RδS
is trivial.

- If S is not empty, then RδS
has order two, and is isomorphic to Z2. We

can choose as generator any sign change εi 7→ −εi, with i in S.



Appendix C

The Dynkin diagram
R-group

The main reference for this chapter is Dana Pascovici’s paper, “The Dynkin
diagram R-group”.1

Let DD be a connected Dynkin diagram. We denote by ∆ the correspond-
ing irreducible root system, and by Π a choice of simple roots for ∆. The set
Π is in one-one correspondence with the set of vertices of the Dynkin diagram.
In this correspondence, disjoint vertices correspond to simply orthogonal simple
roots.2

To every connected Dynkin diagram DD we attach a finite abelian group RDD,
that can be easily computed by looking at DD. We call this group “the R-group
of the Dynkin diagram DD”. It plays a role in our discussion on the Rδ- groups,
because for a simple split real group and a minimal principal series the R-group
Rδ is always a subgroup of RDD. This implies that the order of Rδ can only be
at most four.

C.1 Preliminary definition (the simply laced case)

The definition of RDD is particularly easy when the Dynkin diagram DD is
simply laced, so we start with this case.

An element of RDD is a set S of mutually disjoint vertices of DD, s.t. any
vertex x 6∈ S is connected to an even number of elements of S. RDD is made
into a group with the operation of symmetric difference of sets.

1Representation Theory 5 (2001), 1-16.
2Two roots α and β are “simply-orthogonal” if < α, β >= 0 and α± β is not a root.

For simple roots, this the usual notion of orthogonality. Indeed, the difference of two simple
roots is never a root, and α + β is a root if and only if the α-string through β has length
strictly greater than one, and this happens exactly when the two roots are not orthogonal.

37
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Let us make some examples.

The Dynkin diagram of s s is trivial. Indeed we notice that

S = •© s is not in RDD, because the second vertex is an element
of SC which is connected to one element of S.

S = s •© is not in RDD, for similar reasons.

S = •© •© is not in RDD, because the two vertices are not disjoint.

Therefore, the only element of RDD is the empty set: S = s s.

A similar argument shows that the Dynkin diagram of s s s is
isomorphic to Z2, the non trivial element of RDD being

•© s •© .

We now list the R-group of every connected simply laced Dynkin diagram.
If the group is non trivial, we give the non trivial elements.3

If l = 2n is even, the Dynkin diagram of Al is trivial:

s
1

s
2

s
3

. . . . . . s
2n-2

s
2n-1

s
2n .

If l = 2n + 1 is odd, the Dynkin diagram of Al is isomorphic to
Z2. The non trivial element is:

•©
1

s
2

•©
3

. . . . . . s •©
2n-1

s
2n

•©
2n+1 .

If l = 2n + 1 is odd, the Dynkin diagram of Dl is isomorphic to
Z2. The non trivial element is:

s s s s s¡
¡
•©

@
@•© .3All the results follow from a simple inspection of the Dynkin diagram.
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If l = 2n is even, the Dynkin diagram of Dl is isomorphic to
Z2 ⊕ Z2. The non trivial element are:

•© s •© s¡
¡
•©

@
@@ s

•© s •© s¡
¡¡

s

@
@•©

s s s s¡
¡
•©

@
@•© .

The Dynkin diagram of E6 is trivial:

s s s

s

s s.

The Dynkin diagram of E7 is isomorphic to Z2. The non trivial
element is:

s s s

•©

•© s •© .

The Dynkin diagram of E8 is trivial:

s s s

s

s s s s.
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C.2 General definition

We now give the general definition of Dynkin diagram R-group, which is valid
also in the not-simply laced case. The first step is to associate to any Dynkin
diagram DD a labelled directed graph ΓDD:

The vertices of ΓDD are the same as the vertices of DD (hence they are in
one-one correspondence with the set of simple roots).
Two vertices α and β of ΓDD are connected by an arrow (pointing from α to β)
labelled with the integer nα, β = 2〈α, β〉

〈α, α〉 .

In the simply laced case, the labelled directed graph ΓDD is just the Dynkin
diagram DD, with all the edges labelled with one. In the non-simply laced
cases, ΓDD is given by:

G2 s -3
¾

1
s

F4 s -1¾ s -1
¾

2
s -1¾ s

Bn s 1-¾ s 1-¾ s . . . . . . s 1-¾ s
1-

2
¾ s

Cn s 1-¾ s 1-¾ s . . . . . . s 1-¾ s
2-

1
¾ s

.

Next, we define the Dynkin diagram R-group RDD:

An element of RDD is a set of mutually disjoint vertices of ΓDD, s.t. for any
vertex γ 6∈ S the sum of the labels on arrows going out of γ and into elements
of S is even, i.e.

∑
α∈S nγ, α ≡ 0 mod 2.

RDD is made into a group with the operation of symmetric difference of sets.

It is easy to check that the R-group is trivial for DD of type G2 and F4.
For DD of type Cn, the R-group is isomorphic to Z2, and is generated by

s s s . . . . . . s s s -2
¾

1

•©
.
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Finally, we discuss the case in which DD is of type Bn.
The R-group of Bn is always of order two, but the non-trivial element depends
on the parity of n. More precisely, we can take

•© s •© . . . . . . s •© s
1-

2
¾ •©

as a generator the R-group of B2m+1, and

•© s •© . . . . . . •© s •©
1-

2
¾ s

as a generator for the R-group of B2m.

C.3 The relation between RDD and Rδ

Let G be a simple split real group, and let DD be its Dynkin diagram. Let
P = MAN be the Langlands decomposition of a minimal parabolic subgroup
of G. For any representation δ of M , we consider the R-group Rδ associated to
δ.

Theorem 1. Rδ is always a subgroup of the Dynkin diagram RDD.
In particular, Rδ equals RDD when δ is maximally bad.

We recall that a representation of M is called “maximally bad” if all the
simple roots are bad. For instance, the representation δ{1,3,5,7} = δ{2,4,6,8} of
M ⊂ SL(8) is maximally bad. So is the representation δ{1,3,5} of M ⊂ SP (10).
If the group G is connected, then M has at most one maximally bad represen-
tation (because M is generated by the mαs, for α simple). Sometimes M has
no maximally bad representations at all.4

In the previous section we have shown that the R-group Dynkin diagram is
trivial for DD of type A2n, E6, E8, F4, G2. In any other case, RDD is a finite
abelian group of order two or four. As an immediate consequence, we obtain:

Corollary. For SL2n+1, E6, E8, F4, and G2, Rδ is always trivial.5

For types A2n+1, Bn, Cn, D2n+1 and E7, Rδ has cardinality at most two.
For type D2n, Rδ is a subgroup of Z2 × Z2.

4This is the case for SO0(n + 1, n).
5For the other split groups, it has order at most four.
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Minimal Principal Series
for Split Groups

Let G be a real split semisimple Lie group.

D.1 Minimal Principal Series

Fix a Cartan involution θ and let g = k ⊕ p be the corresponding Cartan de-
composition of g = Lie(G). Choose a maximal abelian subspace a of p, and
set:

• M = ZK(a) the centralizer of a in K

• A = expG(a) the vector subgroup of G with Lie algebra a

• ∆ = ∆(g, a) the set of restricted roots.

Notice that M is finite when G is split, and is abelian when G is linear.
By construction, MA = ZG(a) is the Levi factor of a minimal parabolic sub-
group of G. Suppose that (δ, Cδ) is an irreducible (tempered unitary) repre-
sentation of M , and that ν is a character of A. Choose a minimal parabolic
subgroup P = MAN so that <(ν) is weakly dominant for the roots of A in N .1

You can of course regard δ⊗ ν as a representation of P , with N acting trivially.
The induced representation

XP (δ, ν) = IndG
P (δ ⊗ ν)

is called a minimal principal series for G.
XP (δ, ν) is the representation of G by left translation on the space of functions

HP
δ⊗ν = {F : G → Cδ : ResK(F ) ∈ L2(K, Cδ) and

1Equivalently, choose a positive system ∆+ in ∆ such that

〈<(ν), α〉 ≥ 0 ∀α ∈ ∆+

and set N = expG(
L

α∈∆+ gα).

42



D.1. MINIMAL PRINCIPAL SERIES 43

F (gman) = e−(ν+ρ) log(a)δ(m)−1F (g), ∀man ∈ P = MAN, ∀ g ∈ G}.
Remark. The choice of P is unique only when Re(ν) is non singular (i.e.
<(ν) is strictly dominant for the roots of A in N). The induced representation
IndG

P (δ ⊗ ν) is independent of this choice.

Proof. The fist step is to identify all the minimal parabolic subgroups of G with
Levi factor MA for which <(ν) is weakly dominant.
Partition the restricted roots according to their inner product with <(ν): ∆ =
∆L t∆+

U t∆−
U , with

∆L = {α ∈ ∆: 〈<(ν), α〉 = 0}
∆+

U = {α ∈ ∆: 〈<(ν), α〉 > 0}
∆−

U = {α ∈ ∆: 〈<(ν), α〉 < 0}.
The set ∆L is a root system, and every positive system ∆+ (in ∆) making <(ν)
weakly dominant is of the form

∆+ = ∆+
L t∆+

U

for some choice of a positive system ∆+
L (in ∆L).

Denote by L the centralizer of <(ν) in G. Then L contains MA and has Lie
algebra

l = m⊕ a⊕
⊕

α∈∆L

gα

(m = {0} in the split case).
Any choice of ∆+

L determines a minimal parabolic subgroup of L containing
MA, say PL = MANL, and the map

PL = MANL ←→ P = PLU = MA(NLU)

gives a one-one correspondence between the set of arbitrary minimal parabolics
in L containing MA and the set of minimal parabolics in G making <(ν) weakly
dominant.
Let us continue with the proof of the claim. By induction by stages,

IndG
P (δ ⊗ ν) = IndG

Q

(
IndQ

PL
(δ ⊗ ν)

)

where Q = LU is the (non-minimal) parabolic subgroup of G defined by <(ν).2

Then, because Q is canonically attached to ν, in order to prove that the minimal
principal series XP (δ, ν) is independent of the choice of P , we only have to show

2The Lie algebra of Q is

q = m⊕ a⊕
M

α : 〈α,<(ν)〉≥0

gα = m⊕ a⊕
M

α∈∆L

gα ⊕
M

α∈∆+
U

gα.
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that IndQ
PL

(δ⊗ν) is independent of PL. This is easier to do, because IndQ
PL

(δ⊗ν)
is unitarily induced.3

An explicit computation shows that the character of the unitary representation
IndQ

PL
(δ⊗ν) is independent of the choice of PL, then the result follows from the

fact that two unitary representations with the same character are isomorphic.

D.2 Langlands quotient

For simplicity, assume ν to be real.
Let MA be the Levi factor of a minimal parabolic subgroup of G, let δ be
an irreducible tempered unitary representation of M and let ν be a character
of A. Choose any minimal parabolic subgroup P = MAN making ν weakly
dominant, and let P̄ = MAN̄ be the opposite parabolic. The representation
δ ⊗ ν of MA can be regarded as a representation of both P and P̄ . Let us
denote by

Xquo(δ, ν) = IndG
P (δ ⊗ ν)

and
Xsub(δ, ν) = IndG

P̄ (δ ⊗ ν)

the corresponding induced representations of G.
When ν is strictly dominant, there is an intertwining operator

A = A(P̄ : P : δ : ν) : Xquo(δ, ν) −→ Xsub(δ, ν)

defined by the convergent integral:

[A(P̄ : P : δ : ν)F ](x) =
∫

N̄

F (xn̄) dn̄. (D.1)

When ν is weakly dominant, the integral in (D.1) does not necessarily converge.
To obtain a convergent integral we need to integrate on the smaller subgroup

Ū = exp


 ⊕

α∈∆−U

gα


 ⊆ N̄ .

The integral

[A(P̄ : P : δ : ν)F ](x) =
∫

Ū

F (xn̄) dn̄ (D.2)

converges absolutely for all continuous functions F in HP
δ⊗ν , so we still have an

intertwining operator from Xquo(δ ⊗ ν) to Xsub(δ ⊗ ν).
Define the Langlands quotient representation to be the closure of the image
of this operator:

X̄(δ, ν) = Im(A(P̄ : P : δ : ν)).

3By construction, 〈<(ν), α〉 = 0 for the roots of A in NL, so ν is imaginary and IndQ
PL

(δ⊗ν)
is unitary.
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It is clear that X̄(δ, ν) is a subrepresentation of Xsub(δ, ν) and a quotient of
Xquo(δ, ν). According to Langlands and Milicic, it is actually the largest com-
pletely reducible subrepresentation of Xsub(δ, ν) and the largest completely re-
ducible quotient of Xquo(δ, ν).

D.3 Reducibility

Remark. The Langlands quotient X̄(δ, ν) may be reducible.

Proof. Because X̄(δ, ν) is the closure of the image of

Xquo(δ, ν) = IndG
P (δ ⊗ ν) = IndG

Q

(
IndQ

PL
(δ ⊗ ν)

)

via the long intertwining operator, we start by discussing the reducibility of the
unitary representation IndQ

PL
(δ ⊗ ν).

By deep results of Harish-Chandra and Knapp-Stein, the number of irreducible
constituents of IndQ

PL
(δ ⊗ ν) is equal to the order of the R-group R(δ, ν), and

these constituents are all distinct. Let

IndQ
PL

(δ ⊗ ν) =
|R(δ,ν)|⊕

i=1

Xi
L

be the decomposition of IndQ
PL

(δ ⊗ ν) as a direct sum of irreducible representa-
tions. We get:

Xquo(δ, ν) =
|R(δ,ν)|⊕

i=1

IndG
Q

(
Xi

L

)

and

X̄(δ, ν) =
Xquo(δ, ν)

ker(A)
=
|R(δ,ν)|⊕

i=1

IndG
Q

(
Xi

L

)

ker(A) ∩ IndG
Q

(
Xi

L

) .

By construction the space

X̄i(δ, ν) =
IndG

Q

(
Xi

L

)

ker(A) ∩ IndG
Q

(
Xi

L

)

is the largest completely reducible quotient of IndG
Q

(
Xi

L

)
.

Langlands has proved that each X̄i(δ, ν) is irreducible, so the decomposition

X̄(δ, ν) =
|R(δ,ν)|⊕

i=1

X̄i(δ, ν) (D.3)

exhibits X̄(δ, ν) as a direct sum of irreducible representations.
Equation (D.3) also shows that the reducibility of the Langlands quotient X̄(δ, ν)
comes entirely from the reducibility of the unitarily induced representation
IndQ

PL
(δ ⊗ ν).
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Remark 7. When G is split, the number of irreducible summands of the unitar-
ily induced representation IndQ

PL
(δ⊗ν) is equal to the cardinality of the R-group

Rδ(ν). We define

Rδ(ν) =
W δ(ν)
W 0

δ (ν)
=
{w ∈ W δ : w · ν = ν}
{w ∈ W 0

δ : w · ν = ν} .

For an explicit example of how to compute the number of Langlands quo-
tients, see section (F.2).

How about the reducibility of the (minimal) principal series Xquo(δ, ν) =
IndG

P (δ ⊗ ν)? Because X̄(δ, ν) = Xquo(δ,ν)
ker(A) , reducibility can occur if and only if

(i) the Langlands quotient is reducible

(ii) the intertwining operator A has a kernel.

Of course these two conditions can happen at the same time.
For minimal principal series in split groups these conditions are equivalent to:

(i)′ the R-group Rδ(ν) is non-trivial

(ii)′ there is a root α such that the inner product 〈α∨, ν〉 is a non-zero integer
k, and

(−1)k+1 = δ(mα).

This parity condition means that 〈α∨, ν〉 should be an odd integer if α is
a good root for δ (i.e. δ(mα) = +1), and an even integer if α is a bad.4

4For a motivation of this reducibility condition, see section 4.2 in Vogan’s book “Repre-
sentations of Real Reductive Lie Groups”.



Appendix E

The operator Rµ(sα, γ)

E.1 Preliminary remarks

Lemma 6. Let α be a restricted root and let σα be a representative in M ′ =
NK(a) for the root reflection sα. For (µ,Eµ) in K̂ and (δ, V δ) in M̂ , consider
the operator

Ψα : HomM (Eµ |M , V δ) → HomM (Eµ |M , V sα·δ), T 7→ T ◦ µ(σ−1
α ).

Ψα is well defined and can be computed as follows. Let Kα be the SO(2) sugbroup
attached to α, and let

Eµ =
⊕

n∈Z
φn

be the decomposition of µ in isotypic components of irreducible representations
of Kα. Then

(ΨαT ) |φn= (−i)nT |φn

for all T in HomM (Eµ |M , V δ) and n in Z.

Proof. In order to show that Ψα is well defined, we prove that the homomor-
phism

T ◦ µ(σ−1
α ) : Eµ −→ V sα·δ

is invariant under the action of M .1

By assumption, T is a map from Eµ to V δ with the property that

δ(m1) · T (µ(m−1
1 )v) = T (v)

for all v in Eµ and all m1 in M . Then

1An element m of M acts on the domain by µ(m−1) and on the codomain by (sα · δ)(m).
So T ◦ µ(σ−1

α ) is invariant under M if and only if

(sα · δ)(m) · (T ◦ µ(σ−1
α ))(µ(m−1)v) = (T ◦ µ(σ−1

α ))(v)

for all m in M and all v in Eµ.

47
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(sα · δ)(m) · (T ◦ µ(σ−1
α ))(µ(m−1)v) =

= δ(σ−1
α mσα︸ ︷︷ ︸

m1

)T (µ(σ−1
α )µ(m−1)µ(σα)︸ ︷︷ ︸

µ(m−1
1 )

µ(σ−1
α )v) =

= δ(m1) · T (µ(m−1
1 )µ(σ−1

α )v) = T (µ(σ−1
α )v) = (T ◦ µ(σ−1

α ))(v). X

The rest of the lemma follows from the fact that µ(σ−1
α ) = µ

(
exp(−π

2 Zα)
)

acts by

exp(−n
π

2
i) = i−n = (−i)n

on Φn. Indeed, Φn is the isotypic component of the character χn of SO(2).

Corollary. Let Ψα be the operator defined above, and let T be an element of
HomM (Eµ |M , V δ).

• If v belongs to φ2k + φ−2k, then (ΨαT )(v) = (−1)kT (v)

• If v = v+ + v− belongs to φ(2k+1) + φ−(2k+1), then

(ΨαT )(v+ + v−) = i(−1)k+1T (v+ − v−)

Remark 8. The operator Ψα is not uniquely defined when α is a bad root for
δ.

Proof. Indeed, the element σα = exp(π
2 Zα) = exp(π

2 (Eα + θEα)) depends on
the choice of Eα. Here Eα is any non-zero element of the α-root space satisfying
the normalizing condition

B(Eα, θEα) = −2/‖α‖2. (♦)

Because G is assumed to be split, the α-root space is one-dimensional and the
condition (♦) determines Eα uniquely, up to a sign. The element σα is therefore
defined only up inverse.
When α is a good root for δ, this ambiguity does not affect the operator Ψα,
because

HomM (Eµ |M , V δ) =
⊕

n∈N
HomM (φ2n + φ−2n, V δ)

and the elements σα and σ−1
α act in the same way on the even character of SO(2).

On the contrary, when α is bad for δ, the decomposition of HomM (Eµ |M , V δ)
only involves odd characters of SO(2) and the elements σα and σ−1

α act with
opposite sign on the odd characters of SO(2). Therefore, when α is a bad root,
choosing −Eα instead of Eα has the effect of replacing Ψα with −Ψα.
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The following pictures are meant to illustrate the action of the operator Ψα

on the space HomM (φ0, V
δ).

If α is a good root for δ, then

HomM (Eµ |M , V δ) =
⊕

n∈N
HomM (φ2n + φ−2n, V δ)

and Ψα acts by:

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

t
HomM (φ4 + φ−4, V δ)

t . . . . . .

??

+1

?

−1

? ??

+1

??

−1

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

t
HomM (φ4 + φ−4, V δ)

t . . . . . .

If α is a bad root for δ, then we can write

HomM (Eµ |M , V δ) =
⊕

n∈Z
HomM (φ2n+1, V δ)

with Ψα acting by:

. . . . . .

. . . . . .

t
T |ϕ−3

t
T |ϕ−1

t
T |ϕ+1

t
T |ϕ+3

. . . . . .

??

−i

?

+i

? ??

−i

??

+i

t
ΨαT |ϕ−3

t
ΨαT |ϕ−1

t
ΨαT |ϕ+1

t
ΨαT |ϕ+3

. . . . . .

Lemma 7. The mapping [σα] 7→ Ψα defines a a representation of the Weyl
group of the good roots on the space HomM (Eµ |M , V δ).

Proof. The key point here is that if α is a good root, then sα · δ = δ and Ψα

becomes an automorphism of HomM (Eµ |M , V δ).
Because

[σασβ ] · T = T ◦ µ((σασβ)−1) = (T ◦ µ(σ−1
β )) ◦ µ(σ−1

α ) = Ψα(ΨβT )



50 APPENDIX E. THE OPERATOR Rµ(Sα, γ)

for every pair of good root, the mapping [σα] 7→ Ψα extends to a homomorphism
of W 0

δ into Aut(HomM (Eµ |M , V δ)). The result is a representation of W 0
δ on

HomM (Eµ |M , V δ), defined by the formula:

( [σ] · T )(v) = T (µ(σ−1)v) (E.1)

for all σ in Wδ, all T in HomM (Eµ |M , V δ) and all v in Eµ.

Remark 9. Equation (E.1) also defines a representation of the stabilizer of δ
on the space HomM (Eµ |M , V δ).

E.2 The operator Rµ(sα, γ) for α simple

We introduce some notations:

¦ Kα = exp(RZα) is the SO(2) subgroup attached to α

¦ χl : exp(tZα) 7→ ei l t is the lth character of Kα

¦ φl is the isotypic component of χl inside µ, so that Eµ =
⊕

l∈Z φl is the
decomposition of Eµ in Kα-stable subspaces.

In this section we compute the operator Rµ(sα, γ), for every α simple. For T
in HomM

(
Eµ |M , V δ

)
and v in φl, we have:

(Rµ(sα, γ)T )(v) =
∫

N̄α e−(ρα+γ|aα )(Hα(n̄))T ((σακα(n̄))−1 · v) dn̄ =

=
∫

N̄α e−(ρα+γ|aα )(Hα(n̄))T
(
χ+l(σακα(n̄))−1v

)
dn̄ =

=
[∫

N̄α e−(ρα+γ|aα )(Hα(n̄))χ+l(σακα(n̄))−1dn̄
]
T (v).

To proceed we need to understand the Iwasawa decomposition of an element
n̄ of N̄ . Let us compute such decomposition. Because G is split, the space

gα ≡ RHα ⊕ gα ⊕ g−α

is three-dimensional. Let Eα be a non-trivial element of gα subject to the
normalizing condition B(Eα, θEα) = +2

‖α‖2 Hα. Then θEα is a generator of g−α

and the mapping

ψα : sl(2, R) → gα = RHα + REα + Rθ(Eα)

defined by:

e =
(

0 1
0 0

)
7→ Eα, f =

(
0 0
1 0

)
7→ −θ(Eα), h =

(
1 0
0 −1

)
7→ +2

‖α‖2 Hα
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is an isomorphism between sl(2, R) and gα.
When G has a complexification2, ψα lifts to a group homomorphism

Ψα : SL(2, R) → Gα.

We can therefore “induce” the Iwasawa decomposition from SL(2, R) to Gα:

n̄ = exp(t θ(Eα)) = exp(−t ψα(f)) = Ψα(exp(−t f)) = Ψα

((
1 0
−t 1

))
=

= Ψα

((
cos(arctan(t)) sin(arctan(t))

− sin(arctan(t)) cos(arctan(t))

)( √
1 + t2 0
0 1/

√
1 + t2

) (
1 x
0 1

))
=

= Ψα

(
exp(arctan(t) (e− f)

)
Ψα

(
exp(ln(

√
1 + t2)h)

)
Ψα (exp(x e)) =

= exp
(
ψα(arctan(t) (e− f))

)
exp

(
ψα(ln(

√
1 + t2)h)

)
exp (ψα(x e)) =

= exp (arctan(t)Zα)︸ ︷︷ ︸
κα(n̄)

exp


ln(

√
1 + t2)

2
‖α‖2 Hα

︸ ︷︷ ︸
Hα(n̄)


 exp (xEα) .

Therefore

• ρα(Hα(n̄)) = 1
2α

(
ln(
√

1 + t2) 2
‖α‖2 Hα

)
= ln(

√
1 + t2)

• γ |aα (Hα(n̄)) = γ
(
ln(
√

1 + t2) 2
‖α‖2 Hα

)
= ln(

√
1 + t2) 〈γ, 2

‖α‖2 α〉 =

= ln(
√

1 + t2) 〈γ, ∨α〉
2This is always the case if G is semi-simple. Indeed every adjoint group has a complexifi-

cation: if G = Ad g, you can take GC to be Ad(gC).
It also true, more generally, if the group G is real reductive and satisfies the condition

Z(G) ∩K = {1}.
Indeed, if G = K exp(p0) is the Cartan decomposition of G, and ζ is the center of the Lie
algebra of G (so that g = [g, g]⊕ ζ), then we can write

G = K exp(p0 ∩ [g, g])| {z }
G1

exp(p0 ∩ ζ)| {z }
Z1

. (>)

with G1 real reductive (of the same rank as G) and Z1 a vector group included in the center.
Because Z(G1) = Z(G) ∩ K = {1}, the group G1 is actually semi-simple. So (>) is a
decomposition of G as a direct product of an adjoint group and a vector group, both of which
have a complexification. As a result, we obtain a complexification for G.
Finally, we notice that Z(G) acts by scalars on any irreducible representation of G (this
is Schur’s lemma), and that Z(G) ∩ K acts trivially on the trivial K-type included in any
irreducible spherical representation ρ of G (hence on the whole representation space Eρ).
So, when dealing with spherical representations, we can assume w.l.o.g. that the condition
Z(G) ∩K = {1} is satisfied.
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• χl(σακα(n̄))−1 = χl

(
exp

(−(π
2 + arctan(t))Zα

))
= e−l i π

2 e−l i [arctan(t)] =

= e−l i π
2

(
1+i t√
1+t2

)−l

, for all l in Z.

Let us go back to the computation of Rµ(sα, γ)T (v).

Rµ(sα, γ)T (v) =
[∫

N̄α e−(ρα+γ|aα )(Hα(n̄))χ+l(σακα(n̄))−1dn̄
]
T (v) =

=
[
e−l i π

2
∫
R(
√

1 + t2)−(1+〈γ,∨α〉)
(

1+i t√
1+t2

)−l

dt

]
T (v) =3

=
[
e−l i π

2
∫
R(
√

1 + t2)−(1+〈γ,∨α〉)
(

1−i t√
1+t2

)−l

dt

]
T (v) =4

=
[
e−l i π

2
∫ π/2

−π/2
(cos θ)1+λ el i θ 1

(cos θ)2 d θ
]
T (v)

=
[
e−l i π

2
∫ π/2

−π/2
(cos θ)λ−1 el i θ d θ

]
T (v)=5

=
[
e−l i π

∫ π

0
(sin x)λ−1 el i x d x

]
T (v)

=
[

π Γ(λ) e−il π
2

2λ−1 Γ(1+ λ+l−1
2 )Γ(1+ λ−l−1

2 )

]
T (v).

The last equality follows from the following result:

∫ π

0

(sin t)a ei b t d t =
π Γ(1 + a) ei π b/2

2a Γ(1 + a+b
2 ) Γ(1 + a−b

2 )

for each b in R, and for each a in C such that Re(a) > −1.6

For brevity of notations, we set

dl =

[
π Γ(λ)

2λ−1 Γ
(
1 + λ−l−1

2

)
Γ

(
1 + λ+l−1

2

)
]

.

Then
Rµ(sα, γ)T (v) = (−i)ldl T (v)

3Perform the change of variable (t 7→ −t).
4Apply the change variable θ → x = θ + π/2, which gives:√

1 + t2 = 1
cos θ

1−i t√
1+t2

= cos θ + i tan θ cos θ = ei θ

d t = − 1
(cos θ)2

d θ.

5Another change of variable θ → x = θ + π/2.
6See e.g. [?].
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for all T in HomM (Eµ |M , C) and all v in φl.
The next task is to give a more explicit description of dl, and to do so we must
distinguish between the even and the odd case.7

The case l = 2n, n ≥ 0

It is convenient to introduce the constant

D = d0 =
π Γ(λ)

2λ−1 Γ
(

λ+1
2

)
Γ

(
λ+1

2

)

and to look at the normalized coefficients:

1
D

d2n =
Γ

(
λ+1

2

)
Γ

(
λ+1

2

)

Γ
(

λ+1
2 + n

)
Γ

(
λ+1

2 − n
) .

To simplify this expression we recall the factorization property of the Γ function

Γ(z + 1) = z Γ(z)

and we introduce the notation

(z)n = z(z + 1)(z + 2) · · · (z + n− 1)

for each z in C, and for every positive integer n. Then

Γ(z)Γ(z)
Γ(z + n) Γ(z − n)

=
Γ(z) (z − n)n Γ(z − n)

(z)n Γ(z) Γ(z − n)
=

(z − n)n

(z)n
=

(z − 1)(z − 2) · · · (z − n)
z(z + 1) · · · (z + n− 1)

.

Setting z = λ+1
2 , we find:

1
D

d2n =
(λ− 1)(λ− 3) · · · (λ− 2n + 1)
(λ + 1)(λ + 3) · · · (λ + 2n− 1)

= (−1)n (1− λ)(3− λ) · · · (2n− 1− λ)
(1 + λ)(3 + λ) · · · (2n− 1 + λ)

.

It follows that

Rµ(sα, γ)T (v) = (−i)2nd2n T (v) =
(1− λ)(3− λ) · · · (2n− 1− λ)
(1 + λ)(3 + λ) · · · (2n− 1 + λ)

T (v)

for all T in HomM (Eµ |M , C) and all v in φ2n. Same result for v ∈ φ2n, because
(−i)−2nd−2n = (−1)nd−2n = (−1)nd2n = (−i)2nd2n.

The case l = 2n + 1, n ≥ 0

We introduce the constant

D′ = d1 = (−i)
π Γ(λ)

2λ−1 Γ
(

λ
2

)
Γ

(
λ
2 + 1

) ,

7Because d+l = d−l, we assume l ≥ 0.
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and consider the normalized coefficients:

1
D′ d2n+1 = (+i)

Γ
(

λ
2

)
Γ

(
λ
2 + 1

)

Γ
(

λ
2 − n

)
Γ

(
λ
2 + 1 + n

) .

Using the formulas

Γ(z)
Γ(z − n)

=
(z − n)n Γ(z − n)

Γ(z − n)
= (z − n)n = (z − 1)(z − 2) · · · (z − n)

Γ(z′)
Γ(z′ + n)

=
Γ(z′)

(z′)n Γ(z′)
=

1
z′(z′ + 1) · · · (z′ + n− 1)

for z = λ
2 and z′ = λ

2 + 1, we can write:

1
D′ d2n+1 = (+i)

(λ− 2)(λ− 4) · · · (λ− 2n)
(λ + 2)(λ + 4) · · · (λ + 2n)

= (−1)n(+i)
(2− λ)(4− λ) · · · (2n− λ)
(2 + λ)(4 + λ) · · · (2n + λ)

.

Therefore:
(Rµ(sα, γ)T ) |φ2n+1= (−i)2n+1d2n+1T |φ2n+1=

= (−i)2n+1(−1)n(+i)D′ (2− λ)(4− λ) · · · (2n− λ)
(2 + λ)(4 + λ) · · · (2n + λ)

T |φ2n+1=

= +D′ (2− λ)(4− λ) · · · (2n− λ)
(2 + λ)(4 + λ) · · · (2n + λ)

T |φ2n+1

and

(Rµ(sα, γ)T ) |φ−2n−1= (−i)−2n−1d−2n−1T |φ2n+1= (−i)−2n−1d2n+1T |φ−2n−1=

= (−i)−2n−1(−1)n(+i)D′ (2− λ)(4− λ) · · · (2n− λ)
(2 + λ)(4 + λ) · · · (2n + λ)

T |φ−2n−1

= −D′ (2− λ)(4− λ) · · · (2n− λ)
(2 + λ)(4 + λ) · · · (2n + λ)

T |φ−2n−1 .

Conclusions

Write Eµ =
⊕

l∈Z φl for a decomposition of µ in isotypic components of irre-
ducible representations of the SO(2)-subgroup attached to α, and denote by
F the (common) vector space for the representations δ and sα · δ of M . The
intertwining operator

Rµ(sα, γ) : HomM (Eµ, V δ = F ) → HomM (Eµ, V sα·δ = F )

acts as follows: for every T : Eµ → F in the domain, Rµ(sα, γ)T is the unique
homomorphism Eµ → F such that

• (Rµ(sα, γ)T ) |φ2n= D (1−λ)(3−λ)···(2n−1−λ)
(1+λ)(3+λ)···(2n−1+λ) T |φ2n
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• (Rµ(sα, γ)T ) |φ−2n
= D (1−λ)(3−λ)···(2n−1−λ)

(1+λ)(3+λ)···(2n−1+λ) T |φ−2n

• (Rµ(sα, γ)T ) |φ2n+1= D′ (2−λ)(4−λ)···(2n−λ)
(2+λ)(4+λ)···(2n+λ) T |φ2n+1

• (Rµ(sα, γ)T ) |φ−2n−1= −D′ (2−λ)(4−λ)···(2n−λ)
(2+λ)(4+λ)···(2n+λ) T |φ−2n−1

for every integer n ≥ 0. The constants

D =
π Γ(λ)

2λ−1 Γ
(

λ+1
2

)
Γ

(
λ+1

2

)

and

D′ = (−i)
π Γ(λ)

2λ−1 Γ
(

λ
2

)
Γ

(
λ
2 + 1

)

have been chosen so that

(Rµ(sα, γ)T ) |φ0= D · T |φ0

and
(Rµ(sα, γ)T ) |φ1= D′ · T |φ1 .

For brevity of notations, set:

c2n = D
(1− λ)(3− λ) · · · (2n− 1− λ)
(1 + λ)(3 + λ) · · · (2n− 1 + λ)

; c−2n = c2n

and

c2n+1 = D′ (2− λ)(4− λ) · · · (2n− λ)
(2 + λ)(4 + λ) · · · (2n + λ)

; c−2n−1 = c2n+1.

Then we have the following picture:

. . . . . .

. . . . . .

t
T |φ−2

t
T |φ−1

t
T |φ0

t
T |φ+1

t
T |φ+2

. . . . . .

??

+c2

?

−c1

? ??

+c0

??

t . . . . . .

??

+c2+c1

t
Rµ(sα)T |φ−2

t
Rµ(sα)T |φ−1

t
Rµ(sα)T |φ0

t
Rµ(sα)T |φ+1 Rµ(sα)T |φ+2

Remark 10. It is possible to give an even simpler description of the operator
Rµ(sα, γ), if we know whether the root α is good or bad for δ. Indeed, these
conditions force an element of HomM (Eµ, V δ) to be trivial on all the φl with l
odd, or on all the φl with l even respectively.
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E.2.1 The operator Rµ(sα, γ) for α simple and good

For every good root α, the operator

Rµ(sα, γ) : HomM (Eµ, V δ) → HomM (Eµ, V sα·δ=δ)

is an endomorphism of HomM (Eµ, V δ).
Moreover, the decomposition of HomM (Eµ, V δ) in MKα-stable subspaces in-
volves only even characters.
This is the content of the next two lemmas.

Lemma 8. If α is good for δ, then

HomM (Eµ, V δ) = HomM (Eµ, V sα·δ).

Proof. For every good root α, the reflection sα stabilizes δ. Indeed the Weyl
group of the good co-roots is a (normal) subgroup of the stabilizer of δ.

Lemma 9. If α is good for δ, then

HomM (Eµ, V δ) =
⊕

n∈N
HomM (φ2n + φ−2n, V δ).

Proof. Let n be any integer and let T be an element of HomM (Eµ, V δ). We
show that the restriction of T to every “odd isotypic” φ2n+1 is trivial.
Pick v in φ2n+1, then

T (v) = δ(mα)T (µ(m−1
α )v) = δ(mα)︸ ︷︷ ︸

+Id

T (χ2n+1(m−1
α )v︸ ︷︷ ︸

=eπ(2n+1)iv=−v

) = −T (v)

so T (v) must be equal to zero.

The domain and codomain of Rµ(sα, γ) are now understood.
We already know that

(Rµ(sα, γ)T ) |φ±2n= c2n T |φ±2n

for all T in HomM (
⊕

n∈Z φ2n, V δ), and all n ≥ 0. So the action of Rµ(sα, γ) is
given by:

. . . . . .

. . . . . .

t
T |φ−4

t
T |φ−2

t
T |φ0

t
T |φ+2

t
T |φ+4

. . . . . .

??

+c4

?

+c2

? ??

+c0

??

t . . . . . .

??

+c4+c2

t
Rµ(sα)T |φ−4

t
Rµ(sα)T |φ−2

t
Rµ(sα)T |φ0

t
Rµ(sα)T |φ+2 Rµ(sα)T |φ+4

It is clear from this picture that Rµ(sα, γ) preserves the decomposition of
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HomM (Eµ, V δ) in MKα-invariant subspaces:

HomM (Eµ, V δ) =
⊕

n∈N
HomM (φ2n + φ−2n, V δ).

More precisely, Rµ(sα, γ) acts on HomM (φ2n + φ−2n, V δ) as scalar multiplica-
tion by

c2n = D
Πn

j=1((2j − 1)− 〈λ, ∨α〉)
Πn

j=1((2j − 1) + 〈λ, ∨α〉)
for all n > 0, and it acts on HomM (φ0, V δ) as scalar multiplication D.
We can normalize the intertwining operator so that it takes the value +1 on the
lowest K-type. This corresponds to dividing Rµ(sα, γ) by D.8

The normalized operator acts trivially on HomM (φ0, V δ), and it acts on each
subspace HomM (φ2n + φ−2n, V δ) by the scalar dn:

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

t
Hom(φ4 + φ−4, V δ)

t . . . . . .

??

1
D

Rµ(sα, γ) : 1

?

d2

? ??

d4

??

d6

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

t
HomM (φ4 + φ−4, V δ)

t . . . . . .

We have set d0 = 1 and

d2n =
Πn

j=1((2j − 1)− 〈λ, ∨α〉)
Πn

j=1((2j − 1) + 〈λ, ∨α〉)

for all n ≥ 1.

E.2.2 The operator Rµ(sα, γ) for α simple and bad

When α is a bad root, the reflection sα does not necessarily stabilize δ. Hence
the operator Rµ(sα, γ) may fail to be an endomorphism of HomM (Eµ, V δ).
Moreover, the decomposition of HomM (Eµ, V δ) in MKα-stable subspaces in-
volves only odd characters.
We give the details in the next two lemmas.

Lemma 10. The reflection sα may fail to stabilize δ when α is a bad root.

Proof. Suppose that there exists a positive root β for which the Cartan integer
〈α, ∨β〉 is odd. Then

σ−1
α mβσα = mβm

1
2 [1−(−1)〈α,∨β〉]
α = mβmα

8The constant D is real and positive, so this normalization does not affect the signature.
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and

(sα · δ)(mβ) = δ(σ−1
α mβσα) = δ(mβmα) = δ(mβ) δ(mα)︸ ︷︷ ︸

−Id

= −δ(mβ).

Remark 11. For classical split groups, the reflection sα across a bad root is
in the stabilizer of δ if and only if there are no positive roots β for which the
Cartan integer 〈α, ∨β〉 is odd.

Proof. If G is a classical split group, then M is abelian and is generated by all
the elements mβ = exp(πZβ). So sα stabilizes δ if and only if

(sα · δ)(mβ) = δ(mβ)

for every positive root β. Because

(sα · δ)(mβ) = δ(σ−1
α mβσα) = δ(mβm

1
2 [1−(−1)〈α,∨β〉]
α )

we only need

δ(m
1
2 [1−(−1)〈α,∨β〉]
α ) = +Id.

When 〈α, ∨β〉 is even, this condition is automatically satisfied because m0
α is

the identity of M and δ(e) = +Id. When 〈α, ∨β〉 is odd, this condition always
fails because δ(mα) = −Id.

Example: let G be SL(2) and let δ be the sign representation of M . The
root α = ε1− ε2 is a bad root for δ (because mα = diag(−1, −1)). There are no
other positive roots, and in particular there are no positive roots β for which
the Cartan integer 〈α, ∨β〉 is odd. Hence sα to stabilize δ.
Now let G be SL(3) and let δ be the representation of M that picks up the first
diagonal entry of an element of M . The root α = ε1 − ε2 is a bad root for δ
(because mα = diag(−1, −1, +1) so δ(mα) = −1). We notice that the Cartan
integer 〈ε1 − ε2, ε1 − ε3〉 = +1 is odd, so sα does not stabilize δ.

Lemma 11. If α is bad for δ, then

HomM (Eµ, V δ) =
⊕

n∈N
HomM (φ2n+1 + φ−2n−1, V δ).

Proof. We prove that for all T of HomM (Eµ |M , V δ) and all n in Z, the restric-
tion of T to the “even isotypic” φ2n is trivial.
Pick v in φ2n, then

T (v) = δ(mα)T (µ(m−1
α )v) = δ(mα)︸ ︷︷ ︸

−1

T (χ2n(m−1
α )v︸ ︷︷ ︸

=eπ(2n)iv=+v

) = −T (v)

so T (v) must be zero.



E.2. THE OPERATOR Rµ(Sα, γ) FOR α SIMPLE 59

Now we discuss the action of the operator

Rµ(sα, γ) : HomM (Eµ, V δ) → HomM (Eµ, V sα·δ).

Because
(Rµ(sα, γ)T ) |φ±(2n+1)= ± c2n+1T |φ±(2n+1)

for all T in HomM (Eµ, V δ), and all n ≥ 0, we obtain the following picture:

. . . . . .

. . . . . .

t
T |φ−3

t
T |φ−1

t
T |φ+1

t
T |φ+3

. . . . . .

??

−c3

?

−c1

? ??

+c1

??

+c3

t
Rµ(sα)T |φ−3

t
Rµ(sα)T |φ−1

t
Rµ(sα)T |φ+1

t
Rµ(sα)T |φ+3

. . . . . .

We notice that Rµ(sα, γ) preserves the MKα-invariant subspaces, and it
carries

HomM (φ2n+1 + φ−2n−1, V δ) −→ HomM (φ2n+1 + φ−2n−1, V sα·δ).

If T belongs to HomM (φ2n+1 + φ−2n−1, V δ), its image via Rµ(sα, γ) is the
mapping

φ2n+1 + φ−2n−1 −→ V sα·δ, (v+ + v−) 7−→ c2n+1 T (v+ − v−). (E.2)

It is interesting to compare the action of Rµ(sα, γ) with that one of the operator

Ψα : HomM

(
Eµ, V δ

) → HomM

(
Eµ, V sα·δ) , S 7→ S ◦ µ(σ−1

α )

considered in section (E.1).
For all n ≥ 0, and all T in HomM (φ2n+1 + φ−2n−1, V δ), we have

ΨαT (v+ + v−) = −i(−1)nT (v+ − v−)

so we can write

Rµ(sα, γ) |HomM (φ2n+1+φ−2n−1, V δ)= i(−1)nc2n+1Ψα.

The composition Rµ(sα, γ) ◦ (Ψα)−1 is an endomorphism of HomM

(
Eµ, V δ

)
.

It acts on each HomM

(
φ2n+1 + φ−(2n+1), V δ

)
as scalar multiplication by

i(−1)nc2n+1 = (−1)n(iD′)d2n+1.
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The constant iD′ = i −iπ Γ(λ)

2λ−1 Γ(λ
2 )Γ(λ

2 +1) is real and positive, and the normalized

operator
Rµ(sα, γ) ◦ (Ψα)−1

iD′

acts by:

t
HomM (φ1 + φ−1, V δ)

t
HomM (φ3 + φ−3, V δ)

t
Hom(φ5 + φ−5, V δ)

t . . . . . .

??

Rµ(sα, γ)◦(Ψα)−1

iD′ : d1

?

−d3

? ??

+d5

??

−d7

t
HomM (φ1 + φ−1, V δ)

t
HomM (φ3 + φ−3, V δ)

t
HomM (φ5 + φ−5, V δ)

t . . . . . .

Finally, we recall that d1 = 1 and

d2n+1 =
(2− λ)(4− λ) · · · (2n− λ)
(2 + λ)(4 + λ) · · · (2n + λ)

for all n ≥ 1.

Remark 12. The operator (Ψα) is defined up to a minus sign, but the compo-
sition (Ψα)−1 ◦Rµ(sα, γ) is not affected by this choice.

Proof. By definition, σα = exp
(

π
2 Zα

)
= exp

(
π
2 (Eα + θEα)

)
. As noticed in

section (E.1) there is an ambiguity of sign in the choice of Eα. This implies
that σα is defined up to inverse and Ψα up to a minus sign.
We notice that replacing σα with σ−1

α has also the effect of switching φ2n+1

with φ−2n−1, and c2n+1 with c−2n−1 = −c2n+1. It follows that the operator
Rµ(sα, γ)◦(Ψα)−1

iD′ still acts by (−1)nd2n+1 on HomM

(
φ2n+1 + φ−(2n+1), V δ

)
.

E.3 The operator Rµ(sα, γ) on petite K-types

For an explicit example, see section (F.3).
When the K-type µ is petite, the restriction of µ to the SO(2)-subgroup attached
to α can only include the characters 0, ±1, ±2, ±3. Therefore

HomM (Eµ, V δ) =

{
HomM (φ−2 + φ0 + φ2, V δ) if α is good for δ

HomM (φ−3 + φ−1 + φ1 + φ3, V δ) if α is bad for δ.

We analyze the two cases separately.
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If α is good · · ·
If α is a good root for δ, the operator Rµ(sα, γ) is an endomorphism of

HomM (Eµ |M , V δ) = HomM (φ0, V δ)⊕HomM (φ−2 + φ+2, V δ). (E.3)

It acts on HomM (φ0, V δ) by D, and on HomM (φ−2+φ+2, V δ) by Dd2=D 1−〈λ,∨α〉
1+〈λ,∨α〉 .

Let Ψµ be the representation of the Weyl group of the good co-roots W 0
δ on (E.3)

defined by ([σ] · T )(v) = T (µ(σ−1)v).
The reflection sα = [σα] belongs to W 0

δ , so it acts on HomM (Eµ, V δ). We have:

HomM (φ0, V δ) ≡ the (+1)-eigenspace of sα

HomM (φ−2 + φ+2, V δ) ≡ the (−1)-eigenspace of sα.

Therefore, we obtain the following picture:

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡

¡
¡

¡
¡
¡

¡
¡
¡

t
HomM (φ4 + φ−4, V δ)

t . . . . . .

??

1

?

1−〈λ,∨α〉
1+〈λ,∨α〉

? ??

d4

??

d6

t
HomM (φ0, V δ)

t
HomM (φ2 + φ−2, V δ)

t
HomM (φ4 + φ−4, V δ)

t . . . . . .

⇑
−1 eigenspace

of Ψµ(sα).

⇑
+1 eigenspace

of Ψµ(sα)

We can write:

1
D

Rµ(sα, γ) =

{
+1 on the (+1)-eigenspace of Ψµ(sα)

1−〈γ,∨α〉
1+〈γ,∨α〉 on the (−1)-eigenspace of Ψµ(sα) .

Remark 13. When µ is petite and α is good, the operator Rµ(sα, γ) can be
defined in terms of the representation Ψµ of W 0

δ on the space HomM (Eµ |M
, V δ).
There is no need to know the decomposition of µ in irreducible representations
of Kα ' SO(2).

If α is bad · · ·
If α is a bad root for δ, then

HomM (Eµ, V δ) = HomM (φ1 + φ−1, V δ) + HomM (φ3 + φ−3, V δ)
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and of course

HomM (Eµ, V sα·δ) = HomM (φ1 + φ−1, V sα·δ) + HomM (φ3 + φ−3, V sα·δ).

The normalized operator Rµ(sα, γ)
iD′ acts on HomM (φ1 +φ−1, V δ) as d1Ψα = Ψα:

1
iD′ Rµ(sα, γ) · T = Ψα · T = T ◦ µ(σ−1

α )

and on HomM (φ3 + φ−3, V δ) as the operator −d3Ψα:

1
iD′ Rµ(sα, γ) · T = −d3Ψα · T = −d3T ◦ µ(σ−1

α ).

t
HomM (φ1 + φ−1, V δ)

t
HomM (φ3 + φ−3, V δ)

t
Hom(φ5 + φ−5, V δ)

t . . . . . .

??

Rµ(sα, γ)

iD′ : +d1µ(σ−1
α )

?

−d3µ(σ−1
α )

? ??

+d5µ(σ−1
α )

??

−d7µ(σ−1
α )

t
HomM (φ1 + φ−1, V δ)

t
HomM (φ3 + φ−3, V δ)

t
HomM (φ5 + φ−5, V δ)

t . . . . . .
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

The representation Ψµ of W 0
δ on HomM (Eµ, V δ) extends to a representation

Ψ̃µ of W δ on the same space:

Ψ̃µ[σ] · T = T ◦ µ(σ−1)

for all T in HomM (Eµ, V δ).
If sα belongs to the stabilizer of δ, we can interpret the operator Rµ(sα, γ) in
terms of this Weyl group representation:

1
D

Rµ(sα, γ) = Ψ̃µ(sα)

(as noticed in section (E.1) there is an ambiguity of sign. The choice of this
sign is independent of γ and µ).
If sα does not belong to W δ, then there is no similar interpretation.

Remark 14. If µ has level 3, we still need to know the decomposition of µ in
irreducible representations of Kα ' SO(2).9

If µ has level at most 2, then we can construct Rµ(sα, γ) only in terms of the
representation Ψ̃µ of W δ on the HomM (Eµ, V δ).

9The (+i)-eigenspace of µ(σα) is the union of φ1 and φ−3.
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E.3.1 The operator Rµ(sα, γ) on K-types of level at most
two

If the K-type µ has level two, the restriction of µ to the SO(2)-subgroup at-
tached to α can only include the characters 0, ±1, ±2. Therefore

HomM (Eµ, V δ) =

{
HomM (φ0, V δ) + HomM (φ2 + φ−2, V δ) if α is good for δ

HomM (φ−1 + φ1, V δ) if α is bad for δ.

For every simple root α such that sα belongs to W δ, we can define the operator
Rµ(sα, γ) only in terms of the representation Ψ̃µ of W δ on HomM (Eµ, V δ):
Rµ(sα, γ) = (−iD′)Ψ̃µ(sα) is α is bad, and

Rµ(sα, γ) =

{
D on the (+1)-eigenspace of Ψ̃µ(sα)

D 1−〈γ,∨α〉
1+〈γ,∨α〉 on the (−1)-eigenspace of Ψ̃µ(sα)

if α is good.

E.3.2 The operator Rµ(sα, γ) on fine K-types

Finally, we discuss the case in which the K-type µ is fine.
The restriction of µ to the SO(2)-subgroup attached to α can only include the
characters 0, ±1. Therefore

HomM (Eµ, V δ) =

{
HomM (φ0, V δ) if α is good for δ

HomM (φ−1 + φ1, V δ) if α is bad for δ.

When α is good, the operator Rµ(sα, γ) is a scalar operator, equal to D. We no-
tice that the operator Ψ̃µ(sα) is trivial. So we can write: Rµ(sα, γ) = DΨ̃µ(sα).
When α is bad and the root reflection sα stabilizes δ, the operator Rµ(sα, γ)
acts as −iD′Ψ̃µ(sα).

Remark 15. If µ is fine, the operator Rµ(sα, γ) is a multiple of Ψ̃µ(sα), for
every root α such that sα is in the stabilizer of δ.

Corollary. Rµ(ω, ν) is a multiple of Ψ̃µ(ω) = µ(σ−1
α ), when ω belongs to the

stabilizer of δ.

One final remark. If #Rµ > #Rµ(ν), then there is at least one Langlands
quotient that contains more than one fine K-type. The operator Rµ(ω, ν) may
separate the two fine K-types or act with the same sign. Only in the latter case
we can hope for unitarity.
To conclude the section, we give example of these two possible behaviors.

1. Consider the minimal principal series for SL(2) induced from the sign
representation, with parameter ν = aε1 − aε2, a > 0.
There are two lowest K-types, χ1 and χ−1, and indeed the R-group Rδ
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has cardinality two.10 These K-types lie in the same Langlands quotient
(Rδ(ν) is trivial). We also notice that the element ω is the reflection
through the (unique positive) root and it belongs to W δ, so we are in the
right setting. ω acts by +i on χ1 and by −i on χ−1, so it separates the
two fine K-types, and there is no hope for unitarity.

2. Consider the minimal principal series for SL(4) induced from the repre-
sentation δ = δ2,3 of M , with parameter ν = aε1 + bε2 − bε3 − aε4, with
a > b > 0.11 There are two fine representations of SO(4) containing δ,12

ψ1 + ψ2 and ψ1 − ψ2, and indeed the R-group Rδ has cardinality two.13

The two lowest K-types lie in the same Langlands quotient, because Rδ(ν)
is trivial.14 The element ω = (14)(23) belongs to W 0

δ , hence to W δ.
The setting is similar to the one of the previous example, but in this case
the intertwining operator does not separate the two lowest K-types (the
signs are the same).

10There are no good roots, but there is one positive root stabilizing δ.
11The notations are the same used in section (B.1).
12They are the two irreducible summands of

V2(C4).
13The Weyl group of the good co-roots is

W 0
δ = (symm. group on {2, 3})× (symm. group on {1, 4}) ' Z2 × Z2

but the stabilizer of δ also contains the permutation (12)(34).
14Because W 0

δ (ν) = W δ(ν) = {Id}.



Appendix F

Non-spherical
representations of SP (4)

F.1 Preliminary remarks

The data for SP (4)

We recall the data for SP (4), mainly to fix the notations:

• G = SP (4) = {x ∈ GL(4) : xT Jx = J}
with J the skew-symmetric matrix J =

(
O I2

−I2 O

)
. We can also write:

G = {
(

A B
C D

)
: AT C −CT A = O = BT D −DT B; AT D −CT B = I}

• g = sp(4) = {X ∈ gl(4) : xT J+JX = O} = {
(

A B
C −AT

)
: B C symmetric}

• θ : g → g, X 7→ −XT

• K = SP (4) ∩ SO(4) ' U(2) via the mapping
(

A −C
C A

)
7→ A + iC

• k = {skew-symmetric matrices in g} ' u(2) via the mapping
(

A C
−CT −AT

)
7→ A + iC

• p = {symmetric matrices in g} = {
(

A C
CT −AT

)
: A and C are symmetric}

65
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• a = maximal abelian subspace in g = {
(

Λ O
O −Λ

)
: Λ is diagonal}

• A = {
(

D O
O D−1

)
: D is diagonal, with positive entries}

• M = {
(

D O
O D

)
: D is diagonal, with entries ±1} ' Z2 × Z2

• ∆(g, a) = {±(ε1 ± ε2), ±2ε1, ±2ε2}. We notice that:

– If α = ε1 − ε2, then (in the U(2)-picture)

σα =
(

0 1
−1 0

)
and mα =

( −1 0
0 −1

)

– If α = ε1 + ε2, then

σα =
(

0 −i
−i 0

)
and mα =

( −1 0
0 −1

)

– If α = 2ε1, then

σα =
( −i 0

0 1

)
and mα =

( −1 0
0 1

)

– If α = 2ε2, then

σα =
(

1 0
0 −i

)
and mα =

(
1 0
0 −1

)

• For the simple root ε1−ε2, we find MGα ' SL±(2) and MGα∩K ' O(2)

• For the simple root 2ε2, we find MGα ' O(1) × SL(2) and MGα ∩K '
O(1)× U(1) (in the U(2)-picture).

Irreducible representations of M

The group M is isomorphic to Z2 × Z2, so it has four characters

- δ0 :
(

a1 0
0 a2

)
7→ 1

- δ1 :
(

a1 0
0 a2

)
7→ a1

- δ2 :
(

a1 0
0 a2

)
7→ a1a2
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- δ3 :
(

a1 0
0 a2

)
7→ a2.

The Weyl group fixes both the trivial representation δ0 and the determinant
representation δ2, but switches δ1 and δ3.

Irreducible representations of K

In this subsection we describe the reducible representations of K, and their re-
striction to the subgroups M , and Kα for α simple.

Classification

K̂ = {aε1 + bε2 : a, b ∈ Z, a ≥ b}
We notice that aε1 + bε2 has dimension a− b + 1.

ε1 is the standard representation;

−ε1 is the dual of the standard representation;

ε1 + ε2 is representation
∧2(C2);

−ε1 − ε2 is the dual of
∧2(C2).

Remark 16. Using the isomorphism U(2) ' S1⊗SU(2)
±(1,I) , we can give another

classification of the irreducible representations of K = U(2):

K̂ = {(m, n) : m ∈ Z, n ∈ N and m + n ≡ 0 (mod 2)}

Here m stands for the mth character of S1, and n stands for the irreducible
representation of SU(2) on the space of homogeneous polynomials of degree n.
The tensor product (m,n) has dimension 1 · (n + 1) = n + 1 and is trivial on
±(1, I) if and only if (−1)m+n = +1.
The equivalence between the two classifications is given by:

(m,n) 7→ m + n

2
ε1 +

m− n

2
ε2

aε1 + bε2 7→ (a + b, a− b).

Restriction from K to M

ResM (aε1+bε2) =





(
a−b
2 + 1

)
δ0 +

(
a−b
2

)
δ2 if a and b are both even(

a−b
2

)
δ0 +

(
a−b
2 + 1

)
δ2 if a and b are both odd(

a−b+1
2

)
δ1 +

(
a−b+1

2

)
δ3 if a and b have different parity.
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Restriction from K ' U(2) to O(2)

Recall that Ô(2) = {σ+
0 , σ−0 } ∪ {σj : j ≥ 1}. The notations have been cho-

sen so that

Ind
O(2)
SO(2)(χ0) = σ+

0 + σ−0 and Ind
O(2)
SO(2)(χj) = σj ∀j ≥ 1.

We have:

ResO(2)(aε1+bε2) =





σ+
0 +

⊕
j even=1...a−b σj if a and b are both even

σ−0 +
⊕

j even=1...a−b σj if a and b are both odd⊕
j odd=1...a−b σj if a and b have different parity.

Restriction from K ' U(2) to U(1)× U(1)

ResU(1)×U(1)(aε1 + bε2) =
∑

k=0...(a−b)

(χa−k)× (χb+k).

Fine and petite K-types

Let µ be the irreducible representation of U(2) with highest weight aε1 + bε2.
The eigenvalues of µ(iZα) are

0,±2, . . . ,±(a− b) if α = ε1 ± ε2 and a− b is even;

±1,±3, . . . ,±(a− b) if α = ε1 ± ε2 and a− b is odd;

b, b + 1, . . . , a if α = 2ε1 or α = 2ε2.

Therefore we conclude that aε1 + bε2 is fine if and only if

| a |≤ 1 | b |≤ 1 | a− b |≤ 1

and is petite if and only if

| a |≤ 3 | b |≤ 3 | a− b |≤ 3.

We obtain the following list:

Level 1 (fine)

0 the trivial representation
ε1 the standard representation
−ε2 the dual of the standard representation
ε1 + ε2 representation

∧2(C2)
−ε1 − ε2 the dual of

∧2(C2).
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Level 2

ε1−ε2 −ε1−2ε2 2ε1 +ε2 2ε1 −2ε2 2ε1 +2ε2 −2ε1−2ε2.

Level 3

2ε1 − ε2 ε1 − 2ε2 3ε1 − 3ε2.

F.2 Number of Langlands quotients of XP (δ ⊗
aε1)

Let P = MAN be the minimal parabolic subgroup introduced in section F.1
and let ν be weakly dominant character of A:

ν = aε1 a > 0.

For every non trivial representation δ of M , we discuss the number of Langlands
quotients of the principal series XP (δ ⊗ aε1).

The representation δ1 of M is included in two fine K-types (ε1 and −ε2), so
XP (δ1 ⊗ ν) contains two lowest K-types. To understand whether they belong
to the same Langlands quotient, we look at the group Rδ1(ν).
The only positive root that is good for δ1 is 2ε2, so W 0

δ1
= {Id, s2ε2} = Z2,

while
W δ1 = {Id, s2ε1 , s2ε2 , s2ε1 · s2ε2} = Z2 × Z2.

The R-group Rδ1 = W δ1/W 0
δ1

has order two, as expected.
To find Rδ1(ν), we look for elements of W 0

δ1
and W δ1 that stabilize ν:

W 0
δ1

(ν) = W δ1(ν) = {Id, s2ε2}.

The R-group Rδ1(ν) = W δ1(ν)/W 0
δ1

(ν) is trivial, hence there is a unique Lang-
lands quotient.
Next, we consider the principal series XP (δ3 ⊗ aε1). There are two lowest K-
types, because there are exactly two fine K-types containing δ3 (ε1 and −ε2).
We have:

- W 0
δ3

= {Id, s2ε1} = Z2

- W δ3 = {Id, s2ε1 , s2ε2 , s2ε1 · s2ε2} = Z2 × Z2

- #Rδ3 = #(W δ3/W 0
δ3

) = 2, as expected

- W 0
δ3

(ν) = {Id}

- W δ3(ν) = {Id, s2ε2}
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- #Rδ3(ν) = #(W δ3(ν)/W 0
δ3

(ν)) = 2.

Hence there are two Langlands quotients.
Finally, we look at the principal series XP (δ2 ⊗ aε1). There are two lowest K-
types, because there are exactly two fine K-types containing δ2 (±(ε1 + ε2)).
The good roots for δ2 are ±(ε1 + ε2) and ±(ε1 − ε2). We have:

- W 0
δ2

= {Id, sε1+ε2 , sε1−ε2 , sε1+ε2 · sε1−ε2} = Z2 × Z2

- W δ2 = W (order 8)

- #Rδ2 = #(W δ2/W 0
δ2

) = 2, as expected

- W 0
δ2

(ν) = {Id}

- W δ2(ν) = {Id, s2ε2}
- #Rδ2(ν) = #(W δ2(ν)/W 0

δ2
(ν)) = 2.

Again, there are two Langlands quotients.

To motivate these results, we give a different argument for computing the num-
ber of Langlands quotient of XP (δ ⊗ aε1).

If ν = aε1 then there is exactly one positive root orthogonal to ν, namely
2ε2. Let P 1 = M1A1N1 be the parabolic subgroup containing P determined by
ν.1 By the principle of double induction

XP (δ3 ⊗ ν) = IndG
P (δ3 ⊗ ν) = IndG

P 1(δ1
3 ⊗ ν1)

where

- δ1
3 = IndM1

M1∩P=M(A∩M1)(N∩M1)(δ3 ⊗ ν |A∩M1)

- ν1 = ν |A1 .

Here ν |A∩M1= 0 and ν1 = ν |A1= ν. If we write

M1 = MG2ε2 = O(1)× SL(2)

then

- M = O(1)×O(1) (the second copy comes from scalar matrices in SL(2))

1We have:

- Lie(P 1) = m + a + g−2ε2 ⊕ g2ε2 ⊕ gε1+ε2 ⊕ gε1−ε2 ⊕ g2ε1

- Lie(M1) = RH2ε2 ⊕ g2ε2 ⊕ g−2ε2 ' sl(2)

- Lie(A1) = Ker(2ε2)

- Lie(N1) = gε1+ε2 ⊕ gε1−ε2 ⊕ g2ε1 .
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- δ3 = tr ⊗ sign.

Therefore

δ1
3 = (triv. of O(1))× Ind

SL(2)
min. parab. of SL(2)(sign⊗ 0).

This representation is reducible, and has two irreducible components.
Hence XP (δ3 ⊗ ν) has two Langlands quotients.
Using the same argument, we find that δ2 = sign⊗ sign hence

δ1
2 = (sign of O(1))× Ind

SL(2)
min. parab. of SL(2)(sign⊗ 0)

is reducible with two components, while δ1 = sign⊗ triv, so

δ1
1 = (sign of O(1))× Ind

SL(2)
min. parab. of SL(2)(triv.⊗ 0)

is irreducible.

F.3 Intertwining operators for XP (δ3 ⊗ aε1)

We dedicate this section to the construction of intertwining operators for the
minimal principal series XP (δ3 ⊗ aε1).

For brevity, set δ3 = δ and aε1 = ν. The element ω = s2ε1 stabilizes δ1 and
carries ν into −ν, so we have an intertwining operator

A(ω, δ, ν) : XP (δ ⊗ ν) → XP (δ ⊗−ν), F 7→ [x 7→ ∫
N̄1 F (xωn̄) dn̄].

We decompose ω as a product of simple reflections:

ω = s2ε1 = sε1−ε2s2ε2sε1−ε2

and we look at the corresponding decomposition of the operator A(ω, δ, ν):

A(ω, δ, ν) = A(sε1−ε2 , s2ε2sε1−ε2 ·δ, s2ε2sε1−ε2 ·ν)◦A(s2ε2 , sε1−ε2 ·δ, sε1−ε2 ·ν)◦A(sε1−ε2 , δ, ν).

Because δ3 = δ and aε1 = ν, we get:

A(ω, δ, ν) = A(sε1−ε2 , δ1, −aε2) ◦A(s2ε2 , δ1, aε2) ◦A(sε1−ε2 , δ3, aε1).

We notice that

• A(sε1−ε2 , δ3, aε1) : XP (δ3 ⊗ aε1) → XP (δ1 ⊗ aε2)

• A(s2ε2 , δ1, aε2) : XP (δ1 ⊗ aε2) → XP (δ1 ⊗−aε2)

• A(sε1−ε2 , δ1, −aε2) : XP (δ1 ⊗−aε2) → XP (δ3 ⊗−aε1).
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For every K-type µ, we obtain an operator

Rµ(ω, δ3, aε1) : HomM (Eµ, V δ3) → HomM (Eµ, V δ3) (F.1)

that factorizes as the product of three factors:

• Rµ(sε1−ε2 , δ3, aε1) : HomM (Eµ, V δ3) → HomM (Eµ, V δ1)

• Rµ(s2ε2 , δ1, aε2) : HomM (Eµ, V δ1) → HomM (Eµ, V δ1)

• Rµ(sε1−ε2 , δ1, −aε2) : HomM (Eµ, V δ1) → HomM (Eµ, V δ3).

We need to construct the intertwining operator (F.1) for every petite K-type µ.
It is convenient to work simultaneously with2

Rµ(ω, δ1, aε1) : HomM (Eµ, V δ1) → HomM (Eµ, V δ1)

because each factor of the operator

Rµ(ω, δ1, aε1)⊕Rµ(ω, δ1, aε3)

is an endomorphism of HomM (Eµ, V δ1)⊕HomM (Eµ, V δ3).

Remark 17. At the moment we are looking at operators defined on the full
principal series. Later we will worry about how the various K-types split between
the two Langlands quotients.

µ = ε1

The irreducible representation of U(2) with highest weight ε1 is the standard
representation, and has dimension two. In order to compute the various factors
of the intertwining operator, we need to know the restriction of µ to M and to
the SO(2)-subgroups attached to the simple roots.

Explicit description of µ

There exists a basis {x, y} of Eµ with the following properties:

2This operator factorizes as the product of three factors:

• Rµ(sε1−ε2 , δ1, aε1) : HomM (Eµ, V δ1 ) → HomM (Eµ, V δ3 )

• Rµ(s2ε2 , δ3, aε2) : HomM (Eµ, V δ3 ) → HomM (Eµ, V δ3 )

• Rµ(sε1−ε2 , δ3, −aε2) : HomM (Eµ, V δ3 ) → HomM (Eµ, V δ1 ).
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- µ |M= δ1 + δ3, with Vµ(δ1) = Cx and Vµ(δ3) = Cy

- µ |Kε1−ε2 = χ−1 + χ1, and Vµ(χ1) = C(x + iy) and Vµ(χ−1) = C(x− iy)

- µ |K2ε2 = ξ0 + ξ1, and Vµ(ξ0) = Cx and Vµ(ξ1) = C(y).

We choose the basis T : ax + by 7→ a in HomM (Eµ, V δ1), and T ′ : ax + by 7→ b
in HomM (Eµ, V δ3). Notice that T = T ′ ◦ µ(σ−1

ε1−ε2).

The various factors· · ·

Having set the notations, we describe the action of the various factors:

- Rµ(sε1−ε2 , δ1, aε1)⊕Rµ(sε1−ε2 , δ3, aε1) =
(

O C1

−C1 0

)

- Rµ(s2ε2 , δ3, aε2)⊕Rµ(s2ε2 , δ1, aε2) =
(

C0 0
0 −iC1

)

- Rµ(sε1−ε2 , δ3, −aε2)⊕Rµ(sε1−ε2 , δ1, −aε2) =
(

O C1

−C1 0

)
.

This gives:

Rµ(ω, δ1, aε1)⊕Rµ(ω, δ3, aε1) = C2
1

(
iC1 0
0 −C0

)
.

We have set:3

C0 =
π Γ(a)

2a−1 Γ
(

a+1
2

)
Γ

(
a+1
2

)

C1 =
π Γ(a)

2a−1 Γ
(

a
2

)
Γ

(
a
2 + 1

) .

µ = −ε2

The irreducible representation of U(2) with highest weight −ε2 is the dual of
the standard representation, and has dimension two.

Explicit description of µ

There exists a basis {x, y} of Eµ with the following properties:

3To compute these constants, we must know that:

- 〈aε1, ∨(ε1 − ε2)〉 = a

- 〈aε2, ∨(2ε2)〉 = a

- 〈−aε2, ∨(ε1 − ε2)〉 = a
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- µ |M= δ1 + δ3, with Vµ(δ1) = Cy and Vµ(δ3) = Cx

- µ |Kε1−ε2 = χ−1 + χ1, and Vµ(χ1) = C(x + iy) and Vµ(χ−1) = C(x− iy)

- µ |K2ε2 = ξ−1 + ξ0, and Vµ(ξ−1) = Cx and Vµ(ξ0) = C(y).

An argument similar to the one used before shows that 4

Rµ(ω, δ1, aε1)⊕Rµ(ω, δ3, aε1) = C2
1

( −iC1 0
0 −C0

)
.

µ = 2ε1 + ε2

The irreducible representation of U(2) with highest weight 2ε1 + ε2 has dimen-
sion two.

Explicit description of µ

There exists a basis {x, y} of Eµ with the following properties:

- µ |M= δ1 + δ3, with Vµ(δ1) = Cy and Vµ(δ3) = Cx

- µ |Kε1−ε2 = χ−1 + χ1, and Vµ(χ1) = C(x + iy) and Vµ(χ−1) = C(x− iy)

- µ |K2ε2 = ξ1 + ξ2, and Vµ(ξ1) = Cx and Vµ(ξ2) = C(y).

Then we get5

Rµ(ω, δ1, aε1)⊕Rµ(ω, δ3, aε1) = C2
1

(
+iC1 0

0 −C0
1−a
1+a

)
.

µ = −ε1 − 2ε2

This the dual of the previous representation.

Explicit description of µ

There exists a basis {x, y} of Eµ with the following properties:

- µ |M= δ1 + δ3, with Vµ(δ1) = Cx and Vµ(δ3) = Cy

4This matrix is with respect to the basis {T ′, T}. We have inverted the basis elements,
because we want to get an endomorphism of HomM (Eµ, V δ1 ) + HomM (Eµ, V δ3 ), with δ1
coming first.

5Again with respect to the basis {T ′, T}.
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- µ |Kε1−ε2 = χ−1 + χ1, and Vµ(χ1) = C(x + iy) and Vµ(χ−1) = C(x− iy)

- µ |K2ε2 = ξ−2 + ξ−1, and Vµ(ξ−2) = Cx and Vµ(ξ−1) = C(y).

Then we get6

Rµ(ω, δ1, aε1)⊕Rµ(ω, δ3, aε1) = C2
1

( −iC1 0
0 −C0

1−a
1+a

)
.

Remark 18. An explicit computation shows that, when looking at petite K-
types for detecting unitarity, it is enough to stop at level 2. Indeed, the petite
K-types of level 3 do not give rise to any additional restriction on the values of
the parameters.
Therefore we omit the construction for the intertwining operators corresponding
to µ = 2ε1 − ε2 µ = ε1 − 2ε2, µ = 3ε1 and µ = −3ε2.

F.4 The Langlands quotients of XP (δ3 ⊗ aε1)

In this section, we discuss the unitarity of the Langlands quotients of XP (δ3 ⊗
aε1).

In section (F.2) we have proved that the minimal principal series

XP (δ3 ⊗ aε1) = IndG
P=MAN (δ3 ⊗ ν) = IndG

P 1=M1A1N1(δ1
3 ⊗ ν1)

is reducible. We can write:

- M1 = MG2ε2 = O(1)× SL(2)

- M = O(1)×O(1) ⊂ M1

- δ3 = tr ⊗ sign.

- δ1
3 = IndM1

M1∩P (δ3 ⊗ ν |A∩M1) = IndM1

M1∩P (δ3 ⊗ 0) =

= (triv. of O(1))× Ind
SL(2)
min. parab. of SL(2)(sign⊗ 0) = (δ1

3)+ + (δ1
3)−.

We obtain:7

XP (δ3 ⊗ aε1) = IndG
P 1((δ1

3)+ ⊗ ν1) + IndG
P 1((δ1

3)− ⊗ ν1).

The easiest way to distinguish between these two summands is to look at the
action of the SO(2)-subgroup attached to 2ε2: the first summand contains every
K-type whose restriction to K2ε2 includes a positive odd character, the second
summand contains every K-type whose restriction to K2ε2 includes a negative

6With respect to the basis {T, T ′}.
7This may not be a decomposition in irreducible subspaces. The intertwining operator A

can in fact have a Kernel.
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odd character.8

Next we describe the petite K-types included in each summand.
By Frobenious reciprocity, the multiplicity of µ in ResK(XP (δ3 ⊗ aε1)) equals
the multiplicity of δ3 in ResM (µ). It is easy to check that:

- ResM (0) = δ0

- ResM (ε1) = ResM (−ε2) = δ1 + δ3

- ResM (ε1 + ε2) = ResM (−ε1 − ε2) = δ2

- ResM (ε1 − ε2) = δ0 + 2δ2

- ResM (2ε1 + ε2) = ResM (−ε1 − 2ε2) = δ1 + δ3

- ResM (2ε1) = ResM (−2ε2) = 2δ0 + δ2

- ResM (2ε1 + 2ε2) = ResM (−2ε1 − 2ε2) = δ0

- ResM (2ε1 − ε2) = ResM (ε1 − 2ε2) = 2δ1 + 2δ3

- ResM (3ε1) = ResM (−3ε2) = 2δ1 + 2δ3.

So XP (δ3⊗aε1) contains one copy of ε1, −ε2, 2ε1 + ε2 −ε1−2ε2, and two copies
of 2ε1 − ε2, ε1 − 2ε2, 3ε1, −3ε2. We can say more:

• IndG
P 1((δ1

3)+⊗ ν1) contains one copy of ε1, 2ε1 + ε2, 2ε1− ε2, ε1− 2ε2, and
two copies of 3ε1.

• IndG
P 1((δ1

3)+ ⊗ ν1) contains one copy of −ε2, −ε1− 2ε2, 2ε1− ε2, ε1 − 2ε2,
and two copies of −3ε2.

The corresponding Langlands quotients

• X̄P (δ3 ⊗ aε1)+ =
IndG

P1 ((δ1
3)+⊗ν1)

Ker(A)

• X̄P (δ3 ⊗ aε1)− =
IndG

P1 ((δ1
3)−⊗ν1)

Ker(A)

are unitary only if the intertwining operator Rµ(ω, δ3, aε1) is semi-definite for
every petite K-type included in the quotient, that has level two or less.
More explicitly:

• X̄P (δ3 ⊗ aε1)+ is unitary only if Rµ(ω, δ3, aε1) is semi-definite for µ = ε1
and 2ε1 + ε2.

• X̄P (δ3⊗aε1)− is unitary only if Rµ(ω, δ3, aε1) is semi-definite for µ = −ε2
and −ε1 − 2ε2.

8The restriction of a K-type µ to K2ε2 contains both even and odd characters. Look at
the odd ones: if they are all negative, µ belongs only to IndG

P1 ((δ1
3)− ⊗ ν1); if they are all

positive, µ belongs only to IndG
P1 ((δ1

3)+ ⊗ ν1); if some are positive and some are negative, µ
belongs to both summands.
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The normalized operator Rµ(ω, δ3, aε1)

−C0C2
1

acts by +1 on the fine K-types ε1 and

−ε2, and it acts by 1−a
1+a on 2ε1 + ε2 and −ε1 − 2ε2.

Therefore, the two Langlands quotients are unitary if and only if 0 < a < 1.


