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I. Overview of the computation

Reviewing the setup from our lecture notes of last year [S1], we let R denote a crys-

tallographic root system with V the ambient real Euclidean space, along with the usual

choices (simple roots, positive roots,...), and W the Weyl group.

Given a reduced expression for the longest element of the Weyl group, say w0 =

si1 · · · sil
, there is an induced ordering β∨

1 , . . . , β∨

l of the positive co-roots; namely,

β∨

l = α∨

il
, β∨

l−1 = slα
∨

il−1
, . . . , β∨

1 = sl · · · s2α
∨

i1
.

Now for each ν ∈ V , let A(ν) denote the following element of the group algebra RW :

A(ν) := (1 + 〈ν, β∨

1 〉si1) · · · (1 + 〈ν, β∨

l 〉sil
).

Elementary Facts 1–3.

(1) A(ν) is independent of the choice of reduced expression.

(2) If w0ν = −ν, then A(ν) is Hermitian in every unitary representation of W .

(3) A(ν) is invertible if and only if 〈ν, β∨〉 6= ±1 for all roots β.



Let V0 denote the subspace of V fixed by −w0.

There is a spherical representation of a split p-adic group corresponding to each domi-

nant ν ∈ V0, and thanks to work of Barbasch-Moy, we know that it is unitary if and only

if A(ν) is positive semidefinite (psd) as a (Hermitian) operator on RW .

Similarly, we know that unitarity for spherical representations of real groups requires

σ(A(ν)) to be positive semidefinite for some irreducible representations σ of W . Thus,

Main Problem. For every unitary irrep σ ∈ Ŵ , and all ν ∈ V +
0 , determine when

σ(A(ν)) is psd. More ambitiously, compute the signature of every σ(A(ν)) as well.

It is natural to carve up V into cells according to where a given point ν may sit relative

to each hyperplane 〈ν, β∨〉 = ±1 (i.e., where the singularities occur in each factor of

A(ν)). Given that we are interested only in the case of dominant ν, we will discard the

hyperplanes 〈ν, β∨〉 = −1 (for β∨ positive). With this in mind, we define a cell to be any

of the (non-empty) sets obtained by selecting one of

{ν ∈ V : 〈ν, β∨〉 > 1}, {ν ∈ V : 〈ν, β∨〉 = 1}, {ν ∈ V : 〈ν, β∨〉 < 1}

for each positive co-root β∨, and taking the intersection. Note that each cell is polyhedral

and open relative to its affine span.

It is important to note that cells will often include points that are not in the dominant

chamber; there even exist cells that are entirely disjoint from the dominant chamber. A

second complication is that we are only interested in points where w0ν = −ν. We say that

a cell C is a dominant cell if C ∩ V +
0 is non-empty.

A critical ingredient we need to make the Main Problem feasible is

Non-Elementary Fact 4. For each unitary W -rep σ, the signature of σ(A(ν)) is

constant within each (dominant) cell.

This follows from the non-elementary fact, told to me by Dan Barbasch, that the rank

of A(ν) is constant within each dominant cell.

II. New developments

In last year’s lecture, we identified four subproblems needed to solve the Main Problem:

Subproblem A. Generate explicit matrices for each simple reflection, as well as a

matrix for the invariant form, for each desired irrep σ of W .

This is now completely solved—there is a paper discussing the solution in [S2], as well

as files and documentation available online at
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〈http://atlas.math.umd.edu/unitarity/weyl/hereditary〉

These models have rational matrix entries, are sparse, and have a W -invariant bilinear

form that is diagonal.

Note that W (E7) has 60 irreps, the largest of which have degree 512, and W (E8) has

112 irreps, the largest of which have degree 7168.

It would be nice to have Z-models for these representations, but not if it means sacri-

ficing the sparsity of the models. Also, the rationality of the parameter ν might destroy

any advantage of having an integral model.

Subproblem B. Devise an efficient way to visit each dominant cell C and select a

representative point ν from C.

This problem is essentially solved. The cells have nice explicit descriptions (see the

discussion in [S1]), and we have fast, efficient code for visiting each one. To select the

point ν, we currently use linear programming; alternatively, each cell C contains a unique

face F = F (C) in the cells of the associated affine Weyl group that is minimal in the Bruhat

order and of the same dimension. Selecting the barycenter of F provides a canonical way

to choose a representative from the cell C. Given the tendency for messy coordinates in ν

to create monstrous matrices for σ(A(ν)), having a canonical choice may be preferable to

linear programming. (But this is just a guess.)

To provide some perspective on the scale of this problem, note that in E7, there are

113, 100 dominant cells. Using our current Maple code on an Athlon MP 2800+, it takes

about 7.5 minutes to visit each dominant cell, and about 1 hour to both visit and select a

point ν (via linear programming methods) from these cells.

Similarly, E8 has 1, 070, 716 dominant cells, it takes about 3 hours to visit each one,

and about 1 day (estimate) to both visit and select a representative point from each cell.

Subproblem C. Evaluate the matrix σ(A(ν)).

This is theoretically easy, and thanks to the code we designed to take advantage of the

sparsity of the matrices for σ, also practical. In effect, the matrix for σ(A(ν)) is computed

one row at a time. Note that the average number of nonzero entries in each row of the

matrix σ(1 + 〈ν, β∨〉si) is never more than 10.5, and usually much less.

On the other hand, note that if we have 1GB of RAM available, then the average

number of bits we can afford to allocate to each entry of a (dense) matrix of size (7168)2

is about 20.

Subproblem D. Test whether σ(A(ν)) is psd, and (possibly) compute the signature.
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Note that the standard algorithms for testing positive semi-definiteness of an N × N

matrix are based on the LU -factorization, and are roughly equivalent to computing one

determinant of degree N . In particular, they use about O(N3) scalar operations.

This is the main computational bottleneck. A year ago, this looked barely feasible for

E7 on a commodity PC, and for E8 perhaps only on some high-end hardware or a cluster.

However, the main news in this department is that we have some new tricks that greatly

accelerate the computation of the matrices σ(A(ν)), and allow us to reduce testing the

positivity of σ(A(ν)) to a space whose dimension is (on average) roughly 1/4 of the degree

of σ. In particular, this made it easy for us to determine all of the psd cells for E7 (i.e., the

spherical unitary dual for p-adic E7), and now we are optimistic that the same techniques

may make E8 solvable on ordinary PC hardware.

The tricks will be discussed in more detail in Section IV.

III. Computing the SpUD for p-adic E7 and (perhaps) E8

In this section, we describe in more detail the algorithm we used to determine the

spherical unitary dual (SpUD) for p-adic E7; i.e., finding all dominant cells C such that

σ(A(ν)) is psd for all ν ∈ C and all irreps σ of W (E7).

We intend to apply this method to E8 as well.

Since we are now concerned only with these two Weyl groups, we will add the simplifying

hypothesis that w0 = −1.

A. Adaptive search.

In the first phase of the algorithm, we make a careful selection of a subset of the irreps

of W , say σ1, . . . , σr, and determine a set of representative points ν1, . . . , νk from the

dominant cells for which σi(A(ν)) is psd for all i. Since positive semidefiniteness is a

closed condition (and expensive to test), it is enough to produce representative points νj

from cells that are maximal with respect to the property of being psd. (The cell containing

νj is “maximal” if it is not in the closure of any of the cells containing the other νi’s.)

Temporarily avoiding the question of which representations σi to choose, the list of

points νj is generated by a search that is iterated r times, once for each irrep σi. At all

stages of the search, two lists are maintained:

• The GoodList contains representative points νj such that σ(A(νj)) is psd in all

irreps σ tested up to this point in the computation.

• The BadList contains representative points νj such that σ(A(νj)) is not psd in

some irrep σ.
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Furthermore, since we prefer to avoid maintaining lists of potentially 1 million repre-

sentative points (as would happen for E8), both lists should be minimal in the sense that

no point in the GoodList should be in the closure of the cell containing some other point

in the GoodList, and the same should be true of the BadList.

Starting with both lists initially empty, we visit every dominant cell C (see Subprob-

lem B) and test the irrep σ1. We use the data describing C (hyperplanes and half spaces

containing the cell) to decide if C is in the closure of a cell in the GoodList, or if some cell

in the BadList is in the closure of C. If either of these conditions hold, then we skip C.

Otherwise, we generate a representative point ν from C, compute the matrix σ1(A(ν)),

and test whether it is psd. If yes, then we add ν and C to the GoodList and delete any

existing members of GoodList that are now redundant. If no, then we add ν and C to the

BadList and delete any existing members of BadList that are now redundant.

Once the processing of σ1 has finished, we reset GoodList to empty (but not BadList)

and process σ2, σ3, . . . in the same way. Once the results appear to stabilize, (i.e., the

GoodList and BadList are unchanged after processing an irrep σ), we have a “probable

SpUD”; i.e., the GoodList contains a list of representative points that may possibly be psd

in all irreps of W . In any case, all such cells must be in the closure of the GoodList cells.

B. Ranking the irreps of W .

Now consider the problem of deciding the order in which to test the irreps of W . Note

that the operator A(ν) is a product of factors of the form 1+ 〈ν, β∨〉si for various positive

co-roots β∨. Most cells are on one or more of the hyperplanes 〈ν, β∨〉 = 1, and these give

rise to singular factors 1 + si of rank (N + t)/2, where N = tr(σ(1)) and t = tr(σ(s1))

denote the dimension and trace of a reflection in the chosen irrep σ. The lower the rank

of the operator, the harder it is to find negative parts of the associated quadratic form,

so (heuristically) it is better to use irreps in which the eigenvalues of a reflection have a

relatively high percentage of +1’s compared to −1’s.

With this in mind, we define the value of the irrep σ to be (N + t)/2N , a quantity that

achieves a maximum of 1 for the trivial representation and a minimum of 0 for the sign

representation. We test the (non-trivial) irreps of W in order of decreasing value.

For reference, we list the irreps of W of highest value for E6 E7 and E8 in Table 1. We

label a given irrep σ by the triple [N, t, ε], where ε denotes the sign of tr(σ(w0)); these

triples uniquely distinguish the irreps of each Weyl group of type E up to isomorphism.

In the cases of E6 and E7, the irreps marked by (*)’s indicate a minimal set that suffice

to determine the cells that are psd in all irreps. In the case of E7, this list is absolutely
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E6 E7 E8

Irrep Value Irrep Value Irrep Value

[1, 1,+] 1.000 [1, 1,+] 1.000 [1, 1,+] 1.000

[6, 4,−] 0.833(∗) [7, 5,−] 0.857 [8, 6,−] 0.875

[20, 10,+] 0.750(∗) [27, 15,+] 0.778(∗) [35, 21,+] 0.800

[15, 5,+] 0.667(∗) [21, 11,−] 0.762(∗) [28, 14,+] 0.750

[15, 5,−] 0.667 [21, 9,+] 0.714 [84, 42,+] 0.750

[30, 10,−] 0.667(∗) [35, 15,+] 0.714(∗) [112, 56,−] 0.750

[64, 16, 0] 0.625 [56, 24,−] 0.714(∗) [50, 20,+] 0.700

[15, 5,−] 0.667 [160, 64,−] 0.700

[105, 35,−] 0.667 [210, 84,+] 0.700

[120, 40,+] 0.667 [560, 196,−] 0.675

[189, 51,−] 0.635 [567, 189,+] 0.667

[105, 25,+] 0.619(∗) [300, 90,+] 0.650

Table 1: Irreps of W of high value.

minimal in the sense that for each irrep σ marked by a (*), there is a point ν such that

σ(A(ν)) is not psd, but σ′(A(ν)) is psd in every other irrep σ′.
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C. Verification.

Once a probable-SpUD has been determined, the algorithm enters the verification phase.

We take the list of representative points ν1, . . . , νk from the GoodList, and for every j and

every irrep σ of W , test whether σ(A(νj)) is psd. Of course if this fails, then we must

re-run the adaptive search with the offending irrep σ.

Note that this hardest part of the problem, but the good news is that it is embarrassingly

parallel—each matrix may be tested for psd-ness independently, and thus may easily be

farmed out to separate CPUs.

However in the worst cases, these problems are still challenging. It might have taken

at least a CPU-month to complete this phase of the computation for the 107 maximal psd

cells of E7. However, by taking advantage of the dimension-reducing trick below, we were

able to carry it out in about one CPU-day.

IV. A dimension-reducing trick

Suppose ν1, . . . , νk are representatives of the maximal cells that are suspected of being

psd in every irrep of W . Thanks to work of J.-K. Yu from last year [Y], we know an a

priori description of the big cells (i.e., co-dimension 0) of this type. These are the cells

such that A(ν) is positive definite in every irrep of W . For example, in E7 there are 8 such

cells, and in E8 there are 16. We may omit these cells from the verification test—which is

fortunate, since we have no dimension-reducing tricks for these cases.

The remaining maximal cells (99 in the case of E7) each lie on one or more of the

hyperplanes 〈ν, β∨〉 = 1. In fact, it is surprising that each of the 99 maximal psd cells is

of co-dimension at least 3, and thus lies on at least three of these hyperplanes. We expect

that the psd cells for E8 will have similar features.

For each hyperplane of this type, there is a corresponding factor of A(ν) of the form

1 + si for some i. The rank of this factor is r = tr σ((1 + si)/2) in each irrep σ. If

we can find a cheap way to change coordinates, then this allows for the possibility of

testing the psd-ness of σ(A(ν)) in an r-dimensional space, which cuts the dimension of the

computation by an average factor of 2 (as σ varies over the irreps of W ).

Similarly, if si and sj commute, and there are two orthogonal co-roots β∨

1 and β∨

2 such

that 〈ν, β∨

1 〉 = 〈ν, β∨

2 〉 = 1, then one can show that there is a reduced expression for w0 so

that A(ν) has a pair of consecutive factors of the form (1 + si)(1 + sj). In such cases, the

rank of σ(A(ν)) can be at most

trσ

(
1 + si

2
·
1 + sj

2

)
,
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so this provides the potential for cutting the dimension by a factor of 4, on average.

Remarkably, each of the 99 non-maximal psd cells in E7 have a pair of orthogonal co-

roots with this property. The key question is thus whether we can find a cheap way to

change coordinates so that these dimension-reductions can be exploited.

Turning to the matrix models we constructed in [S2], it should be noted at this point

that the simple reflections for W (E7) and W (E8) are ordered so that s1 and s2 commute.

Moreover, the models are “hereditary” in the sense that the coordinates may be partitioned

into bases for irreps for each of the parabolic subgroups generated by s1, . . . , si, for all i.

Since s1 and s2 commute, this means that the matrices representing s1 and s2 are always

diagonal, and the matrices representing 1 + s1 and (1 + s1)(1 + s2) are also diagonal, with

nonzero entries equal to 2 or 4 (respectively).

Now if the factors 1 + s1 or (1 + s1)(1 + s2) appear somewhere in the middle of an

expression for A(ν), there is no reason to expect σ(A(ν)) to be sparse. However, if we

can arrange for these factors to appear first (or last), then the Hermitian-ness of A(ν) will

force the matrix of σ(A(ν)) to vanish outside of an r × r principal submatrix, where r

denotes the rank of σ(1 + s1) or σ((1 + s1)(1 + s2)).

The following is a straightforward calculation.

Fact. If w0 = −1 and c = 〈µ, α∨

j 〉 6= ±1, then

A(sjµ) =
1

1 − c2
(1 − csj)A(µ)(1 − csj).

In particular, if |c| < 1, then A(sjµ) and A(µ) have the same signature in every W -irrep,

and if |c| > 1, then A(sjµ) and A(µ) have opposite signatures.

The above calculation suggests that we define the broken W -orbit of a point ν in V to

consist of the smallest set BW (ν) such that ν ∈ BW (ν) and

sjµ ∈ BW (ν) for all µ ∈ BW (ν) and all j such that 〈µ, α∨

j 〉 6= ±1.

For every point µ ∈ BW (ν), either A(ν) and A(µ) have the same signature or they have

opposite signatures in every irrep of W , and the alternative is easily predictable.

Proposition. If some µ ∈ BW (ν) satisfies 〈µ, α∨

1 〉 = 〈µ, α∨

2 〉 = 1, then in every

hereditary representation σ of W , the matrix of σ(A(µ)) vanishes outside of a principal

submatrix of order r, where r denotes the rank of σ((1 + s1)(1 + s2)).

Proof. Express A(µ) in terms of a reduced word of the form w0 = s1s2 · · · . �
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For 97 of the 99 maximal psd cells in E7 of positive co-dimension, we found a suitable µ

satisfying the above proposition by trial and error. More specifically, for each orthogonal

pair of co-roots β∨

1 and β∨

2 such that 〈ν, β∨

1 〉 = 〈ν, β∨

2 〉 = 1, we found w ∈ W such that

wα∨

i = β∨

i , and tested to see whether the lexicographically first reduced expression for w

proved that wν ∈ BW (ν). For each ν, we found at least one w with this property in 97

of the 99 cases.

In the remaining two cases, we did not systematically search BW (ν), but we did find

µ ∈ BW (ν) such 〈µ, α∨

1 〉 = 1 (thereby cutting the dimension by an average factor of 2).

Moreover, in these two cases, the number of co-roots such that 〈ν, β∨〉 = 1 is exceptionally

large, the ranks of σ(A(µ)) small, and the computations easy.
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