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An overview '

e MOTIVATION:
Study of the “non-unitarity” of a spherical principal series for a
real split semi-simple Lie group.

e STRATEGY:

1. Use Weyl group calculations to compute the intertwining
operator on petite K-types.

2. Use petite K-types to define a non-unitarity test.

e MAIN RESULT:
A method to construct petite K-types.




Plan of the talk. .. I

e INTRODUCTION
1. The classical problem of studying the Unitary Dual.

2. A non-unitarity test for a spherical principal series

[Vogan-Barbasch)].
For this test we need to know “a lot” of petite K-types.

e ORIGINAL WORK
An inductive argument to extend a certain class of Weyl group

representations to petite K-types




Studying the Unitary Dual'

By a theorem of Harish-Chandra, this is equivalent to:

ﬁ Describing the irreducible admissible repr.s of G, \

up to infinitesimal equivalence.

. Understanding which irreducible admissible repr.s of G

admit a non-degenerate invariant Hermitian form.

3. Deciding whether the non-degenerate invariant Hermitian form

\on an admissible irreducible repr. of G is positive deﬁniiy




The unitary dual of a real semi-simple Lie group

The irreducible admissible repr.s of &G

Langlands, early 1970s:

e Every irreducible admissible representation of G is
infinitesimally equivalent to a Langlands quotient Jp() ® v)

e Two Langlands quotients Jp(d ® v) and Jp/ (6’ ® V') are
infinitesimally equivalent if and only if there exists an element
w of K such that

wPw =P w-6=4¢




The unitary dual of a real semi-simple Lie group

A Langlands Quotient

P = M AN a parabolic subgroup of G
(8, V) an irreducible tempered unitary representation of M
v € (ap)®, with real part in the open positive Weyl chamber

Ip(6 ® v) the corresponding principal series

G acts by left translation on {F: G — V°st. F |, € L?(K, V°);
F(zman) = e~ w+pllog(@)§(m~—1)F(z), Vman € P,V € G}

Jp(0 ® v): the unique irreducible quotient of Ip(§ ® v)

Jp(6d ® v) is the quotient of Ip(d ® v) modulo the kernel of
AP:P:5:v): Ip(6Qv) — Ip(d @), FHf@(N)F(:I:ﬁ)d’ﬁ,




The unitary dual of a real semi-simple Lie group

Hermitian Langlands Quotients

Knapp and Zuckerman, 1976:

Jp(0 ® v) admits a non-degenerate invariant Hermitian form
if and only if there exists an element w of K satisfying the following

“formal symmetry condition”:
wPw™ =P Ww-02~0 Ww-v=—U.

(because the Hermitian dual of Jp(d ® v) is Jp(0d @ —1)).
Any non-degenerate invariant Hermitian form on Jp(d ® v) is a real
multiple of the form induced by the Hermitian operator

[B:(S(w)oR(w)oA(P:P:cS:I/)}

from Ip(d ®v) to Ip(d ® —0).




The unitary dual of a real semi-simple Lie group

Unitary Langlands Quotients

Jp(d ® ) is unitary

I

B is semi-definite.

Next task: Computing the signature of B I




The unitary dual of a real semi-simple Lie group

Computing the signature of B

the first reduction: A K-type by K-type calculation. ..

/0 For every K-type (u, E,), we have a Hermitian operator \
R,UJ(CU, I/)I HOIHK(EM, Ip((s &) l/)) — HomK(EM, Ip((s &) —D))

e By Frobenius reciprocity:

\ R, (w, v): Homp (E, |mnk, V°) — Homp (B, |vmnk, V(S)/




The unitary dual of a real semi-simple Lie group

Constructing the operator

R, (w, v): Homps(Restnx Eu, VO) — Hompy (Reshynx B, V)

additional assumptions...

G is split, e.g. SL(n,R), Sp(2n,R), SO(n,n), Es, E7, Eg
Let go = &9 @ po be the Cartan decomposition of Lie(G), and let ag be a
maximal abelian subspace of pg. G split if Zy,(ag) = {0}.

P = MAN is a minimal parabolic subgroup of GG
0 is the trivial representation of M

v 1s a real character of A




The spherical unitary dual of a real split semi-simple Lie group

Constructing the operator R,(w, v)

. a reduction to rank-one computations

e When P is a minimal parabolic, the element w is a Weyl group
element, and it admits a minimal decomposition as a product
of simple reflections. We can decompose R, (w, ) accordingly.

(Gindikin-Karpalevic)

e When G is split, the operator corresponding to a simple

reflection can be computed using the results known for
SL(2, R).




The spherical unitary dual of a real split semi-simple Lie group

Constructing the operator R,(w, )

Some Considerations:

pros We obtain a decomposition of R, (w, v) as a product of
operators corresponding to simple reflections, for which an

explicit formula exists.

This formula depends on the decomposition of u in K®) types,
and this decomposition changes when (3 varies. It is very hard
to keep track of these different decompositions when you
multiply the various rank-one operators to obtain R, (w, v).




A new strategy [Vogan-Barbasch]

When p is “petite”, compute R, (w, V)
by means of Weyl group calculations

e A K-type u is called petite if the SO(2) subgroup attached to
every simple root only acts with characters 0, +=1,£2.

e When p is petite, we can compute R, (w, v) in a purely
algebraic manner. Indeed, R,(w, v) depends only on the
representation of the Weyl group on the space of
M-fixed vectors of L,,.




A new strategy

Constructing R,(w, v), for u petite

e R,(w, v)is an endomorphism of H = Hom(Res}; E,., V°)
)*, and it carries a Weyl group representation 1,

e Decompose R, (w, ) as a product of rank-one operators.
For every simple root 3, we can write

(8) (8)

o, C) ® Homs (Resy;* (02 & 9-2), C)

4

H = Homs (Resyr™

~"

(+1)-eigenspace of 9, (sg3) (—1)-eigenspace of v, (sg)

+1 on the (+41)-eigenspace of 9, (sp)

1_<’77 B:>
1+(v, B)

= Ru(sp, 7)=
: on the (—1)-eigenspace of 1, (sp)




A non-unitarity test'

e For each petite K-type (u, E,), compute the rep-

resentation 1), of the Weyl group on the space of

M-invariants in Eu

e Use v, to construct the algebraic operator R, (w, v),

and evaluate its signature

o If R,(w, v) fails to be (positive) semi-definite, then

Jp(d ® V) is not unitary.

[Barbasch] This non-unitarity test also detects unitarity

when G is a classical group.




A non-unitarity test

A few more comments on the non-unitarity test

The non-unitarity test consists of computing the signature of the
intertwining operator on petite K-types (by means of Weyl group
calculations). For this test to be efficient, “we need to know a

large number of petite K-types”.

Next task: Constructing petite K-types'




Plan of the talk. .. '

e INTRODUCTION Vv
1. The classical problem of studying the Unitary Dual.

2. A non-unitarity test for a spherical principal series

[Vogan-Barbasch)].

For this test we need to know “a lot” of petite K-types.

e ORIGINAL WORK
An inductive argument to extend a certain class of Weyl group

representations to petite K-types

trick: look at the example of SL(3) to get insight!




The example of SL(3, R)

G = SL(3, R)
K = SO(3, R)
M = {3 x 3 diag. matrices with det. 1 and diag. entries = +1}
A = {3 x 3 diag. matrices with det. 1 and non-negative entries}

W ~ 83 (symmetric group on 3 letters)

M = {dg, 61, 02, 03} with Jy the trivial representation of M,
and

0;: M — R,




The example of SL(3, R)

The petite K-types for SL(3, R)...

o [E={Hy:N>0})

For each N > 0, Hy is the complex v.s. (of dimension 2N + 1)

of harmonic homogeneous polynomials of degree N in
three variables. SO(3) acts by:

(g-F)(z,y, 2) = F((z, y, 2)9) Vg€ SOB3),VF € Hn.

° [f{petz‘te = {Ho, Hi, HQ}]

For each simple root o, Hxn |Ka250<2): @l]\;_N &1




The example of SL(3, R)

. the corresponding Weyl group representations

e Ho |m=d0 = (Ho)™ is the trivial repr. of W = S3
—~—

dim 1

Hq ’M: 01 D 09 B 03 = (Hl)M :{O}
——

dim3

Ho = (00)? ® 01 ® d2 B d3 = (Ho)M = C?
—~—
dim 5
(H2)M is the standard repr. of W = S3




The example of SL(3, R)

The restriction to M’ of the petite K-types

Repr.s of M’

trivial

standard

dimension

1

2

eigenvalues of o,

1

+1

() HO trivial

® Hl = 1

o H — standard P s

There is no sign repr. (of W = S3)!!




The example of SL(3, R)

A closer look at H,

By, ={ay* +b2° —(a+b)z*:a,bcCld Cay @ Czz @ Cyz

F={M-fixed vectors} “Zg-w’, with veF, og-v=—v

- v, with v the “unique” (-1) eigenv. of 0., ., in F
-, with u the “unique” (-1) eigenv. of g, ., in F

-w, with w the “unique” (-1) eigenv. of o.,_., in F




Constructing petite K-types...

An algorithm to construct petite K -types'

e Input: a representation p of M’ C SL(n) not containing the
sign representation of W (SL(3))

(when p is a Weyl group representation, this is equivalent to
requiring that the partition p have at most two parts)

e Output: a petite representation p, of SO(n) that extends p

e Value: When p is a Weyl group representation, the signature
w.r.t. p, of the intertwining operator for a spherical principal
series can be computed using only the Weyl group repr. p.




Constructing petite K-types...

The main ideas. ..

e As a Lie algebra representation, the differential of a petite
representation of K is generated by its restriction to M’
through an iterated application of the Z,s.

e Because the representation is petite, the eigenvalues of Z, must
lie in the set {0, +i, +2i}. More precisely, Z, must act by:

0 on the (+1)-eigenspace of o,

+¢ on the (4i)-eigenspace of o,

(
—i on the (—i)-eigenspace of o,
(—

+27 on the

1)-eigenspace of g,.

The element o, = exp (gZa) is a representative in M’ for s,.

[We only need to know the action of Z, on the (—1)-eigensp. of O'a]




Constructing petite K-types...

A sketch of the construction. ..

It is an inductive argument. This is the mth step:

e By construction (p,,, F,, ) is a representation of M’ that does

not include the sign of Ss.

e We add some generators G, (to specify the action of each Z,
on the (—1)-eigenspace of o).

e We impose some relations R,, (to control the eigenvalues of
Z. and make sure not to introduce any copy of the sign

representation of S3).

e The result is a new vector space

F,.  + Span(Gn)
R

on which we define a representation p,,.1 of M’.




Constructing petite K-types...

A sketch of the construction... (continued)

e Because (py11, F ) does not include the sign of S3, we can

Pm-+1
iterate the construction.

e The number of steps is finite (G,, = @ for m big).

e The final result is a representation of M’ that extends the
original representation. It is possible to define an action of

Lie(K) on this space, that lifts to a petite representation of K.




Constructing petite K-types...

Some details

I will describe:

e The set of generators G,, to be added at the mth step of the

construction.

e The set of relations R,, to be added at the mth step of the

construction.

e The vector space that results from this inductive construction,
and the actions of M’ and Lie(K') on this space.




Constructing petite K-types...

44 29
The “new generators” G,, ...

The set G,, consists of all the “formal strings” Z, v, with v

a (—1)-eigenvector of o, in F, , and v a positive root.

... keep in mind the example of SL(3)!!




Constructing petite K-types...

The “new relations” R,, ...

The set R,, consists of the following four kinds of relations:

1. “linearity relations”

[Z,,(a,lvl + CLQ’UQ) = alZyvl + CLQZ,/UQ]

for all a;, ag in C, and for all (—1)-eigenv.s vy, vy of 0, in F), .

2. “commutativity relations”

(21, 200 = 20 20,0 |

for all mutually orthogonal positive roots vy, vo and all
simultaneous (—1)-eigenvectors of o,,, 0y, in F, ..




Constructing petite K-types...

The “new relations” R, ... (continued)

3. “no repetitions!” [ZVZV’U — —4@]

for all positive roots v and all (—1)-eigenvectors of o, in F}, ..

4. “(x)-relations” [Zyv =03 (Z,v) + 0~ - (Z,,v)]

for all positive roots v, all (—1)-eigenvectors v of o, in F),_,

and all triples of positive roots «, 3, v forming an A5, such that
e a=v or a lLv; g )v (soautomatically v f v), and

® 0, U= —v; 05 -v=—v (so automatically o2 - v = —v).




Constructing petite K-types...

The final result. ..

e the vector space: we have added to F), the equivalence
classes of all the strings of the form:

S=Zuq, - Lo,V

with aq, ..., a, mutually orthogonal positive roots, and v a

simultaneous (—1)-eigenvector for o, ..., 04, in F),.

e the action of M': o -[Z,v] = |[(Ad(0)(Z,))(0 - v)]
e the action of Lie(K):

2,0 if o, -

2| = [ ZoZyv] if o, -

2] =04 - | Z,0] if 03 :




Constructing petite K-types...

Construction for SL(2n, R)

(2n) = L0y + 0y + - - - + 09y,

(2n — k, k) = L(2¢1 + 29 + - - - + 2¢;), for all 0 < k < n

(n,m) = L(2¢1 + -+ 2p—1 — 2¢p,) & L(2¢01 + - -+ + 201 + 29y, l

Construction for SL(2n + 1, R)

(2n+1) = L(0y1 + 02 + -+ + Oy,)

(2n+1—k, k) = L2ty + 2¢pg + --- + 2¢;), for all 0 < k < n




Constructing petite K-types...

Possible generalizations. .. I

e Our method for constructing petite K-types appears to be

generalizable to other split semi-simple Lie groups, other than

SL(n), whose root system admits one root length.

e As p varies in the set of Weyl group repr.s that do not contain
the sign of S3, the output will be a list of petite K-types on
which the intertwining operator for a spherical principal series
can be constructed by means of Weyl group computations.

e The final result will be a non-unitarity test for a spherical
principal series for split groups of type A, D, Eg, E7 and Ej.




Construction for the representation 5?2 of S,

We can choose a basis {v, u} of F, = C* that consists of a (+1)
and a (—1) eigenvector of o15. W.r.t. this basis, we have:

1 0
0 -1

u: (—1) eigenvector of o12, 034

~1/2 —1/2 |

u—+v: (—1) eigenvector of o13, 024
~3/2  1/2
~1/2 1/2

v —u: (—1) eigenvector of go3, 014.
3/2  1/2




Complete list of generators:

U v Z12u Zg4u
Z13(’LL + U) Z24(’LL + U) Z23 (U — U) 214(1} — U)
ZioZsauw  Z13Z24(v+u)  ZazZia(v —u).

There are no relations among strings of length one, and there is

only one relation among strings of length two:

1 1
Z12234U = —5223214(0 —u) — 5213224(”& + v).
The extension has dimension 10, and the corresponding

representation of Lie(K) iS poc, 126, D P22, 26,




For all a, B in A, we have:

+Z, fta=por al

—7, otherwise.

For every string S = Z,, ... Z,, v and for every positive root (3

U% (ZarZay * ZayV) = (_1)#{j: |75, Za; 170} (ZayZas = Zayv) -




e Let & be a root system with one root-length. For all o, 3 in P,

sg(a) cannot be orthogonal to .

e Let aq,..., a, be mutually orthogonal positive roots and let v
be an element of F), satisfying

O-a .U:...:O-C\{T..U:_U'

1

Let v be any positive root. Then

(1) S=Z4, ... 24, vis a (+1)-eigenvector of o, if and only if
the following conditions are satisfied:
O 0, V=1
ovl{ay,...,a}.
S =2y ... 2.0 1s a (—1)-eigenvector of o, if and only of
the following conditions are satisfied:
0 Oy V=—0

o v belongs to the set {a1,..., a,}, or it is orthogonal to it.




