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An overview

• MOTIVATION:

Study of the “non-unitarity” of a spherical principal series for a
real split semi-simple Lie group.

• STRATEGY:

1. Use Weyl group calculations to compute the intertwining
operator on petite K-types.

2. Use petite K-types to define a non-unitarity test.

• MAIN RESULT:

A method to construct petite K-types.
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Plan of the talk. . .

• INTRODUCTION

1. The classical problem of studying the Unitary Dual.

2. A non-unitarity test for a spherical principal series
[Vogan-Barbasch].
For this test we need to know “a lot” of petite K-types.

• ORIGINAL WORK

An inductive argument to extend a certain class of Weyl group
representations to petite K-types
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Studying the Unitary Dual

By a theorem of Harish-Chandra, this is equivalent to:
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1. Describing the irreducible admissible repr.s of G,
up to infinitesimal equivalence.

2. Understanding which irreducible admissible repr.s of G

admit a non-degenerate invariant Hermitian form.

3. Deciding whether the non-degenerate invariant Hermitian form
on an admissible irreducible repr. of G is positive definite.
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The unitary dual of a real semi-simple Lie group

The irreducible admissible repr.s of G

Langlands, early 1970s:

• Every irreducible admissible representation of G is
infinitesimally equivalent to a Langlands quotient JP (δ ⊗ ν)

• Two Langlands quotients JP (δ ⊗ ν) and JP ′(δ′ ⊗ ν′) are
infinitesimally equivalent if and only if there exists an element
ω of K such that

ωPω−1 = P ′ ω · δ = δ′ ω · ν = ν′.

5



The unitary dual of a real semi-simple Lie group

A Langlands Quotient

• P = MAN a parabolic subgroup of G

• (δ, V δ) an irreducible tempered unitary representation of M

• ν ∈ (a′0)
C, with real part in the open positive Weyl chamber

• IP (δ ⊗ ν) the corresponding principal series
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G acts by left translation on {F : G → V δ s.t. F |K∈ L2(K, V δ);

F (xman) = e−(ν+ρ)log(a)δ(m−1)F (x), ∀man ∈ P, ∀x ∈ G}

• JP (δ ⊗ ν): the unique irreducible quotient of IP (δ ⊗ ν)
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JP (δ ⊗ ν) is the quotient of IP (δ ⊗ ν) modulo the kernel of

A(P̄ : P : δ : ν) : IP (δ ⊗ ν) → IP̄ (δ ⊗ ν), F 7→ ∫
Θ(N) F (xn̄) dn̄
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The unitary dual of a real semi-simple Lie group

Hermitian Langlands Quotients

Knapp and Zuckerman, 1976:

JP (δ ⊗ ν) admits a non-degenerate invariant Hermitian form
if and only if there exists an element ω of K satisfying the following
“formal symmetry condition”:

ωPω−1 = P̄ ω · δ ' δ ω · ν = −ν̄.

(because the Hermitian dual of JP (δ ⊗ ν) is JP̄ (δ ⊗−ν̄)).
Any non-degenerate invariant Hermitian form on JP (δ⊗ ν) is a real
multiple of the form induced by the Hermitian operator

¨
§

¥
¦B = δ(ω) ◦R(ω) ◦A(P̄ : P : δ : ν)

from IP (δ ⊗ ν) to IP (δ ⊗−ν̄).
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The unitary dual of a real semi-simple Lie group

Unitary Langlands Quotients

JP (δ ⊗ ν) is unitary
m

B is semi-definite.

Next task: Computing the signature of B
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The unitary dual of a real semi-simple Lie group

Computing the signature of B

the first reduction: A K-type by K-type calculation. . .
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• For every K-type (µ, Eµ), we have a Hermitian operator

Rµ(ω, ν) : HomK(Eµ, IP (δ ⊗ ν)) → HomK(Eµ, IP (δ ⊗−ν̄))

• By Frobenius reciprocity:

Rµ(ω, ν) : HomM (Eµ |M∩K , V δ) → HomM (Eµ |M∩K , V δ)
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The unitary dual of a real semi-simple Lie group

Constructing the operator

Rµ(ω, ν) : HomM (ResK
M∩K Eµ, V δ) → HomM (ResK

M∩K Eµ, V δ)

additional assumptions. . .

• G is split, e.g. SL(n,R), Sp(2n,R), SO(n, n), E6, E7, E8

Let g0 = k0 ⊕ p0 be the Cartan decomposition of Lie(G), and let a0 be a

maximal abelian subspace of p0. G split if Zt0 (a0) = {0}.

• P = MAN is a minimal parabolic subgroup of G

• δ is the trivial representation of M

• ν is a real character of A
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The spherical unitary dual of a real split semi-simple Lie group

Constructing the operator Rµ(ω, ν)

. . . a reduction to rank-one computations

• When P is a minimal parabolic, the element ω is a Weyl group
element, and it admits a minimal decomposition as a product
of simple reflections. We can decompose Rµ(ω, ν) accordingly.
(Gindikin-Karpalevic)

• When G is split, the operator corresponding to a simple
reflection can be computed using the results known for
SL(2, R).
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The spherical unitary dual of a real split semi-simple Lie group

Constructing the operator Rµ(ω, ν)

Some Considerations:

pros We obtain a decomposition of Rµ(ω, ν) as a product of
operators corresponding to simple reflections, for which an
explicit formula exists.

cons This formula depends on the decomposition of µ in K(β) types,
and this decomposition changes when β varies. It is very hard
to keep track of these different decompositions when you
multiply the various rank-one operators to obtain Rµ(ω, ν).
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A new strategy [Vogan-Barbasch]

When µ is “petite”, compute Rµ(ω, ν)
by means of Weyl group calculations

• A K-type µ is called petite if the SO(2) subgroup attached to
every simple root only acts with characters 0, ±1,±2.

• When µ is petite, we can compute Rµ(ω, ν) in a purely
algebraic manner. Indeed, Rµ(ω, ν) depends only on the
representation of the Weyl group on the space of
M-fixed vectors of Eµ.
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A new strategy

Constructing Rµ(ω, ν), for µ petite

• Rµ(ω, ν) is an endomorphism of H ≡ HomM (ResK
M Eµ, V δ)

• H ' (EM
µ )∗, and it carries a Weyl group representation ψµ

• Decompose Rµ(ω, ν) as a product of rank-one operators.
For every simple root β, we can write

H = HomM (ResMK(β)

M ϕ0, C)︸ ︷︷ ︸
(+1)-eigenspace of ψµ(sβ)

⊕ HomM (ResMK(β)

M (ϕ2 ⊕ ϕ−2), C)︸ ︷︷ ︸
(−1)-eigenspace of ψµ(sβ)

⇒ Rµ(sβ , γ)=





+1 on the (+1)-eigenspace of ψµ(sβ)

1−〈γ, β̌〉
1+〈γ, β̌〉 on the (−1)-eigenspace of ψµ(sβ)
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A non-unitarity test

• For each petite K-type (µ, Eµ), compute the rep-
resentation ψµ of the Weyl group on the space of
M-invariants in Eµ

• Use ψµ to construct the algebraic operator Rµ(ω, ν),
and evaluate its signature

• If Rµ(ω, ν) fails to be (positive) semi-definite, then
JP (δ ⊗ ν) is not unitary.

[Barbasch] This non-unitarity test also detects unitarity
when G is a classical group.
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A non-unitarity test

A few more comments on the non-unitarity test

The non-unitarity test consists of computing the signature of the
intertwining operator on petite K-types (by means of Weyl group
calculations). For this test to be efficient, “we need to know a
large number of petite K-types”.

Next task: Constructing petite K-types
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Plan of the talk. . .

• INTRODUCTION X

1. The classical problem of studying the Unitary Dual.

2. A non-unitarity test for a spherical principal series
[Vogan-Barbasch].
For this test we need to know “a lot” of petite K-types.

• ORIGINAL WORK

An inductive argument to extend a certain class of Weyl group
representations to petite K-types

trick : look at the example of SL(3) to get insight!
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The example of SL(3, R)

• G = SL(3, R)

• K = SO(3, R)

• M = {3× 3 diag. matrices with det. 1 and diag. entries = ±1}
• A = {3× 3 diag. matrices with det. 1 and non-negative entries}
• W ' S3 (symmetric group on 3 letters)

• M̂ = {δ0, δ1, δ2, δ3} with δ0 the trivial representation of M ,
and

δj : M → R,




m1 0 0

0 m2 0

0 0 m3


 7→ mj , ∀ j = 1, 2, 3.
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The example of SL(3, R)

The petite K-types for SL(3, R) . . .

•
¨
§

¥
¦K̂ = {HN : N > 0}

For each N > 0, HN is the complex v.s. (of dimension 2N + 1)
of harmonic homogeneous polynomials of degree N in
three variables. SO(3) acts by:

(g · F )(x, y, z) = F ((x, y, z)g) ∀ g ∈ SO(3), ∀F ∈ HN .

•
¨
§

¥
¦K̂petite = {H0, H1, H2}

For each simple root α, HN |Kα'SO(2)=
⊕N

l=−N ξl.
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The example of SL(3, R)

. . . the corresponding Weyl group representations

• H0︸︷︷︸
dim 1

|M= δ0 ⇒ (H0)M is the trivial repr. of W = S3

• H1︸︷︷︸
dim3

|M= δ1 ⊕ δ2 ⊕ δ3 ⇒ (H1)M = { 0 }

• H2︸︷︷︸
dim 5

|M= (δ0)2 ⊕ δ1 ⊕ δ2 ⊕ δ3 ⇒ (H2)M = C2

(H2)M is the standard repr. of W = S3
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The example of SL(3, R)

The restriction to M ′ of the petite K-types

Repr.s of M ′ trivial sign standard ν1 ν2

dimension 1 1 2 3 3

eigenvalues of σα 1 −1 ±1 1, ±i −1, ±1

• H0|M ′ = trivial

• H1|M ′ = ν1

• H2|M ′ = standard ⊕ ν2

There is no sign repr. (of W = S3)!!
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The example of SL(3, R)

A closer look at H2

EH2 = {ay2 + bz2 − (a + b)x2 : a, b ∈ C}︸ ︷︷ ︸
F≡{M-fixed vectors}

⊕ Cxy ⊕ Cxz ⊕ C yz︸ ︷︷ ︸
“Zβ ·v”, with v∈F, σβ ·v=−v

• xy = Zε1−ε2 · v, with v the “unique” (-1) eigenv. of σε1−ε2 in F

• xz = Zε1−ε3 · u, with u the “unique” (-1) eigenv. of σε1−ε3 in F

• yz = Zε2−ε3 ·w, with w the “unique” (-1) eigenv. of σε2−ε3 in F
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Constructing petite K-types. . .

An algorithm to construct petite K-types

• Input: a representation ρ of M ′ ⊆ SL(n) not containing the
sign representation of W (SL(3))

(when ρ is a Weyl group representation, this is equivalent to
requiring that the partition ρ have at most two parts)

• Output: a petite representation µρ of SO(n) that extends ρ

• Value: When ρ is a Weyl group representation, the signature
w.r.t. µρ of the intertwining operator for a spherical principal
series can be computed using only the Weyl group repr. ρ.
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Constructing petite K-types. . .

The main ideas. . .

• As a Lie algebra representation, the differential of a petite
representation of K is generated by its restriction to M ′

through an iterated application of the Zαs.

• Because the representation is petite, the eigenvalues of Zα must
lie in the set {0, ±i, ±2i}. More precisely, Zα must act by:

0 on the (+1)-eigenspace of σα

+i on the (+i)-eigenspace of σα

−i on the (−i)-eigenspace of σα

±2i on the (−1)-eigenspace of σα.

The element σα = exp
(

π
2 Zα

)
is a representative in M ′ for sα.

¨
§

¥
¦We only need to know the action of Zα on the (−1)-eigensp. of σα
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Constructing petite K-types. . .

A sketch of the construction. . .

It is an inductive argument. This is the mth step:

• By construction (ρm, Fρm) is a representation of M ′ that does
not include the sign of S3.

• We add some generators Gm (to specify the action of each Zα

on the (−1)-eigenspace of σα).

• We impose some relations Rm (to control the eigenvalues of
Zα and make sure not to introduce any copy of the sign
representation of S3).

• The result is a new vector space

Fρm + Span(Gm)
Rm

on which we define a representation ρm+1 of M ′.
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Constructing petite K-types. . .

A sketch of the construction. . . (continued)

• Because (ρm+1, Fρm+1) does not include the sign of S3, we can
iterate the construction.

• The number of steps is finite (Gm = ∅ for m big).

• The final result is a representation of M ′ that extends the
original representation. It is possible to define an action of
Lie(K) on this space, that lifts to a petite representation of K.
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Constructing petite K-types. . .

Some details

I will describe:

• The set of generators Gm to be added at the mth step of the
construction.

• The set of relations Rm to be added at the mth step of the
construction.

• The vector space that results from this inductive construction,
and the actions of M ′ and Lie(K) on this space.
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Constructing petite K-types. . .

The “new generators” Gm . . .

The set Gm consists of all the “formal strings” Zνv, with v

a (−1)-eigenvector of σν in Fρm , and ν a positive root.

. . . keep in mind the example of SL(3)!!
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Constructing petite K-types. . .

The “new relations” Rm . . .

The set Rm consists of the following four kinds of relations:

1. “linearity relations”
¨
§

¥
¦Zν(a1v1 + a2v2) = a1Zνv1 + a2Zνv2

for all a1, a2 in C, and for all (−1)-eigenv.s v1, v2 of σν in Fρm .

2. “commutativity relations”
¨
§

¥
¦Zν1Zν2v = Zν2Zν1v

for all mutually orthogonal positive roots ν1, ν2 and all
simultaneous (−1)-eigenvectors of σν1 , σν2 in Fρm−1 .
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Constructing petite K-types. . .

The “new relations” Rm . . . (continued)

3. “no repetitions!”
¨
§

¥
¦ZνZνv = −4v

for all positive roots ν and all (−1)-eigenvectors of σν in Fρm−1 .

4. “(?)-relations”
¨
§

¥
¦Zνv = σβ · (Zνv) + σγ · (Zνv)

for all positive roots ν, all (−1)-eigenvectors v of σν in Fρm ,
and all triples of positive roots α, β, γ forming an A2, such that

• α = ν or α ⊥ ν ; β 6⊥ ν (so automatically γ 6⊥ ν), and

• σα · v = −v; σ2
β · v = −v (so automatically σ2

γ · v = −v).
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Constructing petite K-types. . .

The final result. . .

• the vector space: we have added to Fρ the equivalence
classes of all the strings of the form:

S = Zα1 . . . Zαrv

with α1, . . . , αr mutually orthogonal positive roots, and v a
simultaneous (−1)-eigenvector for σα1 , . . . , σαr in Fρ.

• the action of M ′: σ · [Zνv] = [(Ad(σ)(Zν))(σ · v)]

• the action of Lie(K):

Zα · [Zνv] = [0 ] if σα · (Zνv) = +(Zνv)

Zα · [Zνv] = [ZαZνv] if σα · (Zνv) = −(Zνv)

Zα · [Zνv] = σα · [Zνv] if σ2
α · (Zνv) = −(Zνv).
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Constructing petite K-types. . .

Construction for SL(2n, R)

(2n) ⇒ L(0ψ1 + 0ψ2 + · · ·+ 0ψn)

(2n− k, k) ⇒ L(2ψ1 + 2ψ2 + · · ·+ 2ψk), for all 0 < k < n

(n, n) ⇒ L(2ψ1 + · · ·+ 2ψn−1 − 2ψn)⊕ L(2ψ1 + · · ·+ 2ψn−1 + 2ψn)

Construction for SL(2n + 1, R)

(2n + 1) ⇒ L(0ψ1 + 0ψ2 + · · ·+ 0ψn)

(2n + 1− k, k) ⇒ L(2ψ1 + 2ψ2 + · · ·+ 2ψk), for all 0 < k ≤ n
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Constructing petite K-types. . .

Possible generalizations. . .

• Our method for constructing petite K-types appears to be
generalizable to other split semi-simple Lie groups, other than
SL(n), whose root system admits one root length.

• As ρ varies in the set of Weyl group repr.s that do not contain
the sign of S3, the output will be a list of petite K-types on
which the intertwining operator for a spherical principal series
can be constructed by means of Weyl group computations.

• The final result will be a non-unitarity test for a spherical
principal series for split groups of type A, D, E6, E7 and E8.
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Construction for the representation S2,2 of S4

We can choose a basis {v, u} of Fρ = C2 that consists of a (+1)
and a (−1) eigenvector of σ12. W.r.t. this basis, we have:

σ12, σ34 Ã


 1 0

0 −1


 u : (−1) eigenvector of σ12, σ34

σ13, σ24 Ã


 −1/2 −1/2

−3/2 1/2


 u + v : (−1) eigenvector of σ13, σ24

σ23, σ14 Ã


 −1/2 1/2

3/2 1/2


 v − u : (−1) eigenvector of σ23, σ14.
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Complete list of generators:

u v Z12u Z34u

Z13(u + v) Z24(u + v) Z23(v − u) Z14(v − u)

Z12Z34u Z13Z24(v + u) Z23Z14(v − u).

There are no relations among strings of length one, and there is
only one relation among strings of length two:

Z12Z34u = −1
2
Z23Z14(v − u)− 1

2
Z13Z24(u + v).

The extension has dimension 10, and the corresponding
representation of Lie(K) is ρ2ε1+2ε2 ⊕ ρ2ε1−2ε2 .
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For all α, β in ∆, we have:

Ad(σ2
β)(Zα) =





+Zα if α = β or α ⊥ β

−Zα otherwise.

For every string S = Zα1 . . . Zαrv and for every positive root β

σ2
β · (Zα1Zα2 · · ·Zαk

v) = (−1)#{j : [ Zβ , Zαj
] 6=0} (Zα1Zα2 · · ·Zαk

v) .
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• Let Φ be a root system with one root-length. For all α, β in Φ,
sβ(α) cannot be orthogonal to α.

• Let α1, . . . , αr be mutually orthogonal positive roots and let v

be an element of Fρ satisfying

σα1 · v = · · · = σαr · v = − v.

Let ν be any positive root. Then

(i) S = Zα1 . . . Zαrv is a (+1)-eigenvector of σν if and only if
the following conditions are satisfied:
◦ σν · v = + v

◦ ν ⊥ {α1, . . . , αr}.
(ii) S = Zα1 . . . Zαrv is a (−1)-eigenvector of σν if and only of

the following conditions are satisfied:
◦ σν · v = − v

◦ ν belongs to the set {α1, . . . , αr}, or it is orthogonal to it.
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