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1. INTRODUCTION

Finding the Iwahori-spherical unitary dual for p-adic groups can be re-
duced to the classification of unitary representations for the associated graded
Hecke algebras with real parameters.

Let G denote a split reductive p-adic group, G is its complex dual with
maximal torus A and §, & the corresponding Lie algebras, W the Weyl group.
A is the symmetric algebra over a* and H = CW ®c A the graded Hecke
algebra associated to the group G.

1.1. Standard modules and Langlands quotients. I recall the classifi-
cation of irreducible modules of H (Kazhdan-Lusztig, Lusztig).

Theorem 1.1 (KL, L). The irreducible modules for H are parametrized
by G-conjugacy classes (s,0,v), where s € § is semisimple, O C § is a
nilpotent orbit such that [s,e] = e for e a representative in O and 9 € 21\(5, e)
is an irreducible representation of the component group of the centralizer of
s and e.

To (s,0,1), one associates an H-rmodule, X (s, O, ) called standard mod-
ule. Every irreducible module of H can be realized as the unique quotient
(Langlands quotient) L(s,O,) of some standard module X. Moreover, the
factors in X (s, 0, ) correspond to parameters (s, 0, 9') with O < O'.
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If {e, h, f} is a standard triple for e € O, it is possible to write s = %h+17,
where U centralizes the triple. If 7 = 0, the parameter is called tempered. If,
in addition, O doesn’t meet any Levi component of §, it is called discrete
series. These are the basic examples of unitary representations of H.

When O meets some Levi component t C §,

X(s,0,¢) =Hew, (Vel,),

for some tempered representation V of Hj; and character v. In this parametriza-
tion, X (M, V,v) denotes the standard module and L(M, V,v) its Langlands
quotient.

1.2. Intertwining operators and K-types. Barbasch-Moy showed that a
Langlands quotient L(M,V,v) (with v real) is Hermitian if and only if there
exists a Weyl group element w which conjugates the triple into (M,V, —v).
Corresponding to this Weyl element w, they considered the intertwining
operator I(w,v) : X(M,V,v) — X(M,V,—v) defined as follows. If w =
81...8 is a reduced decomposition, I(w,v) = [[1I(sj,v), where for each
simple root o, put r4 = (tea — 1)(a — 1)~ and then

I(sq,v) : X(M,V,v) = X(M,V,s5qv), 1, = x146 ® 15,

Of great importance for the actual classification is the CW-structure of
the standard modules. Recall the decomposition CW = ZaeW Vo @ V7,
(0,V,) denoting the irreducible representations of the Weyl group, which,
by analogy with the real groups, are called K-types. The Weyl group repre-
sentations for type Fj; were classified by Kondo.

Because r,, acts on the right, by Frobenius reciprocity, I(s,, V) gives rise
to an operator r,(sq,v) : (V)WM) - (V- )W(M) 1f the module were
unitary, all the operators arising by the restrictions to K-types would be
positive semidefinite. One of the main tools for showing modules are not
unitary is to compute the signature of these operators.

Among the Weyl group representations associated to a nilpotent orbit,
there are some special ones called lowest K-types, coming from the Springer
correspondence, which appear with multiplicity one in the standard module
and which parametrize the Langlands quotient.

The spherical modules are precisely those which contain the trivial K-type
and for this case it is enough to consider the long intertwining operator. The
spherical Langlands parameters are uniquely determined by the infinitesimal
character. : fix s a semisimple element in § corresponding to an infinitesimal
character. Define §;:

gi={z€d: [s,2] =z}
Then there exists a unique largest nilpotent orbit O in § which meets §;
and one can write s = $h + ¥ for a triple (e, h, f) of O and ¥ € 3(0).
If O meets a Levi component th = §o x gl(k1) X - - - gl(k;), the intersection
is Op x (k1) x --- x (k;) and the Langlands quotient L(s) is the spherical
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quotient of Ind$;(L(sq) ® v1 ® - - - ® 1), with s half the middle element of
Oo.

Theorem 1.2 (Barbasch). If v dominant (i.e. (v,a) > 0 for all positive
roots a) and if wy denotes as before the long Weyl element, X (v) = H ®,
C, (v real), then Im I(wg,v) = L(v), where L(v) denotes the irreducible
spherical module parametrized by v.

1.3. Parameters for Fj.
The root system for Fj is

Diagram: o1 — o2 =03 — a4

The reflections s, s9 correspond to the long simple roots.

Simple Roots and Weights:

1] — €] — €2 — €3 — €4 w1 = €1

g = 2€4 wy = %61+%62+%63+%e4
a3 = €3 — €4 w3 = 2€1 + €2 + €3

a4 = €9 — €3 wy = €1 + €2

2. SPHERICAL UNITARY DUAL

Spherical unitary dual is partitioned by the nilpotent orbits. To each
nilpotent orbit (), one attaches a set of unitary parameters, called comple-
mentary series. In most cases, the complementary series match the spherical
unitary parameters attached to the trivial nilpotent in the centralizer of O.
Exception: O = A1 + A;.

2.1. Maximal parabolic cases. The starting case is that of the nilpotent
orbits coming from maximal parabolics. They allow a single parameter.
The calculations are done entirely using the relevant K-types, which are a
minimal set of Weyl group representations that are sufficient for determining
the unitarity. The payoff is that one can match these Weyl representations
with K-types in the real Fj, so that the spherical real unitary would follow.

Lemma 2.1. The K-types 11, 23, 42, 81 and 91 are a minimal set for de-
termining the unitarity of the spherical parameters in the mazimal parabolic
cases.

Example:

B3: Induced from the trivial representation on B3 has parameter

2’ 272727
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The K-types are:
(1) 11 +494+ 91 + 21 + 8.

Reducibility occurs at v = 1, 2, 4 corresponding to Fy(az2), Fi(a1), Fj.
Relevant values of the intertwining operator are:
21: wifl/#land()ifl/zl

£1/+2)(u+4)

4y:

9. 2w

) 5”“35”“%

T e G

v 11 42 91 21 81
+ o+ o+ o+

1 + + + 0 0
+ + 4+ + -

2 + 4+ 0 0 0
+ + - - +

4 £ 0 0 0 0
+ - o+ o+ -

There is a complementary series 0 < v < 1.

2.2. Induction step. For a nilpotent O, one determines all hyperplanes
of reducibility of the standard module. On each hyperplane, the spherical
parameter is parametrized by an orbit O’ > O, so one knows which such
parameters are unitary. Keep only the regions bounded by unitary walls;
for these show they are unitarily induced from unitary parameters of some
subgroup.

Example a.

A2:

Infinitesimal character (11 + 5,1+ %, %2, -1+ %), v1 > v2 > 0.

Reducibility lines: 214 + v =1, 11 + 210 =1, 1 — v = 1 from A; + A/Q,
vi+vy=1v;=1and o =1 from Cs(a1), v1 + v, =3, vy =3 and v, =3
from Cj.

The complementary series is {0 < vy < 11 < 1_2" 2} and {1 — 21y <1 <
1 —w}.

On the line v; = vy, for 0 < 1n < %, the parameter is unitarily induced
irreducible from a complementary series associated to the nilpotent (33) in
Cs.

As seen from the picture, the spherical complementary series is identical
with the one of the centralizer Gs.

Example b.

A +;&1:
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Vs -
Nilpotent A2 in Fu
vy =2

A1+xz2

Cs

Fy

ol

Fi(a1)

C’3(a1)

4}

Infinitesimal character (4, % + v, —% + v, %), v1 >20,v >0.
Reducibility lines: vy = % from As, v1 = % from By, 11 = % from Bg,

vy = 1 from Cs(a1), vo = 2 from Cs, v1 — 25 = —%, V1 + 219 = % and
v — 209 = % from A1 + As, v1 — 19 = —%, v+ = % and v; — vy = % from
Ay + As.

The complementary series is {v + 219 < %, v < %} and {21 — 1y >

%, vy < 1}

On the line 1 =0, 0 < 15 < § and 3 < vy < 1, the standard module is
unitarily induced irreducible from a complementary series associated to the
nilpotent (222) in Cj.

This is an interesting example: the complementary series does not match
that of the centralizer A, + A;.

2.3. Generic case.

Theorem 2.2. Assume the graded Hecke algebra is of type Fy.
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(1) The spherical complementary series associated to a nilpotent orbit
O coincides with that attached to the trivial orbit in its centralizer,
except in the case O = A; +A;. In this ome case, the complementary
series s strictly included in the one for the centralizer.

(2) The complementary series associated to the trivial nilpotent with
dominant infinitesimal character (v1,vq,v3,14), V1 > Vo > V3 >
vy >0, 01 —vg—rv3—uvg >0 are:

(@) {n < 3}
(b) {V1+1/2+l/3+1/4 >, v+t —m< 1}.

The first observation is that any region bounded by a wall on which a
short root is 1 is not unitary. On any such wall, there is a factor coming
from A; which can’t be unitary at all points since the complementary series
for Zl is two-dimensional.

Therefore, one can look only at regions bounded by long roots and finds
the hyperplanes on which the parameter can be unitary. Then, in each
region determined by such hyperplanes, the parameter can be deformed to

Bs
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a wall where a simple root equals to zero and the parameter is unitarily
induced from Bs or Cj.

One can reformulate the classification of the spherical dual in an analogous
way to the results for classical groups of Barbasch-Moy:

Theorem 2.3. A spherical parameter for Fy is unitary if and only if it is
a complementary series from a unitarily induced module from the Iwahori-
Matsumoto dual of a tempered representation tensored with a GL-complemen-
tary series.

3. UNITARY DUAL

The method is to look at the lowest K-types for each nilpotent orbit O
and compare the intertwining operator on them to the intertwining operator
on lowest K-types of nilpotents O’ immediately above O in the partial order.

This is very advantageous in some cases, for example in the case of max-
imal parabolics.

3.1. Maximal parabolics. For this special case, the following argument
(Barbasch-Moy) applies : for the modules parametrized by such a nilpotent
orbit O and lowest K-type p, the next bigger nilpotent (' has the property
that a factor with lowest K-type u attached to (' appears at the first point
of reducibility. Beyond this point, u and ' stay in the same factor and they
have opposite signatures at co. Two such K-types have opposite signatures
at oo if and only if their respective lowest harmonic degrees have different
parity.

Example:

Bj: The infinitesimal character is (% +v, —% + v, %, %), Centralizer A1, LKT
89.

The first reducibility point is at v = 1, where there are factors with LKT
94 and 29 coming from Fjy(az). For v > 1, these K-types will stay in the
same factor with 8. 89 and 94, or 8 and 29, have opposite signs at oo,
ruling out v > 1.

Moreover, when normalized by the value on the LKT, the intertwining

operators give
1—v 1—-v
29 : d9,:
2 1+Van 4 14+v

3.2. Matching of intertwining operators.
Example a.
A,: The infinitesimal character is (n+2,1+2,2,-1+%2) with0 <
vy < vy, centralizer Go, LKT 8;.

The intertwining operator decomposes into a product of intertwining op-
erator for subgroups and maximal parabolics: (51 o 52)3, where 51 is the

operator corresponding to Indgl‘““2
2

and 39 to Ind%3.
Az
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One can match the calculations with those in the centralizer Gs.
81 matches 17 in Go

61 matches 15 in Go

161 matches 21 in Go

62 matches 13 in Gq

Example b.

A1 + Aq: The infinitesimal character is (v1, %-l-Z/Q, —%-i—l/g, %), centralizer
Ai+ Ay, LKT 9.

One tries to match the dual with that of A; + A;. The intertwining
operator gives:

91: +1
1
. 24
83' Ly
8- f—U2
1- 14+vs

This implies that the unitary dual in included in 0 <15, <1,0< 11 < %
However, there are two lines that cut through this region: v + 21y = % and
v+ 21y = % and one also needs the operator on 44 to finish this case.

Example c.

Aq: The infinitesimal character is (v, v, vs, %) with 0 < v3 < vy < vy,
Centralizer C5, LKT 23.
The K-types that match the intertwining operator in Cj5 are:
23 with 3 x 0

49 with 0 x 3
81 with 0 x 12
9; with1x 2

43 with 0 x 13

One cannot match 12 x 0 and 2 x 1 which are relevant for C3. Although
the generic unitary parameters associated to this nilpotent are the same as
for C3, there are other unitary parameters which do not correspond to Cj.

4. THE OTHER EXCEPTIONAL GROUPS

The same methods can be applied to study the unitary dual for the other
exceptional groups. There are examples in F; and FEg of spherical comple-
mentary series which do not match those of the corresponding centralizer.
However they occur very rarely, e.g. only one such example in E7, and it is
unclear how to predict them.
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