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1. General W-Graphs
Let (W, S) be a Coxeter system, S = {s1,...,5,}.
Primarily, W = a finite Weyl group.
Let H = H(W, S) = the associated Iwahori-Hecke algebra over Z[g*!/?].
= (T1,..., T, | (T3 —q)(T; + 1) = 0, braid relations).

DEFINITION. An S-labeled graph is a triple I' = (V, m, 7), where
e V is a (finite) vertex set,
em:V xV — Zlgt/?] (i.e., a matrix of edge-weights),
o7:V — 25 =2

CONVENTIONS.
o u —> v means m(u — v) = =3,
e u, — v means m(u — v) = m(v — u) = 1.

Let M(T) = free Z[g*'/?]-module with basis V.
Introduce operators T; on M (I'):

qu if i & 7(v),

Ti(v) =
(v) { —v+ql/? D wigr(wy MU = wu i i € T(v).

DEFINITION (K-L). T'is a W-graph if this yields an H-module.

NoTE: (T; — q)(T; + 1) = 0 (always), so W-graph < braid relations.



qu if i ¢ 7(v),
—v+q'/? Zu:iﬁ(u) m(v — w)u ifi € 7(v).

10 = { 1)

REMARKS.
e Kazhdan-Lusztig use T}, not T;.
e Restriction: for J C S, T'y:=(V,m,7[ ) is a Wj-graph.

e At ¢ = 1, we get a W-representation.
e However, braid relations at ¢ = 1 A W-graph:

o If 7(v) C 7(u), then (1) does not depend on m(v — u).
CONVENTION. m(v — u) := 0 whenever 7(v) C 7(u).
DEFINITION. A W-cell is a strongly connected W-graph.

For every W-graph I, M (I") has a filtration whose subquotients are cells.
Typically, cells are not irreducible as H-reps or W-reps.
However (Gyoja, 1984):

if W is finite every irrep may be realized as a W-cell.



2. Admissible W-graphs
H has a distinguished basis {C!, : w € W} (the Kazhdan-Lusztig basis).
The action of T; on C!, is encoded by a W-graph I'yy = (W, m, 1), where
o 7(v) ={se S :l(sv) <l(v)} (left descent set),

e m is determined by the Kazhdan-Lusztig polynomials:

plu, v)+p(v,u) if 7(u) £ 7(v),

m(u — v) = { 0 if 7(u) C 7(v),

where 1(u,v) = coeff. of ¢ =W=1/2in P, (q) (= 0 unless u < v).

REMARKS.

e This graph is generally very sparse, and has edge weights in Z.

e The cells of I'yyy decompose the regular representation of H.

e These cells are often not irreducible as H-reps or W-reps.

e For all W of interest (finite or crystallographic), we know that P, ,(q)
has nonnegative coefficients.

e These W-graphs are edge-symmetric; i.e.,
m(u — v) =m(v —u) if 7(u) € 7(v) and 7(v) € 7(u). (2)

o If pu(u,v) # 0, then £(u) # £(v) mod 2, so these graphs are bipartite.

e (Vogan) Similar W-graphs, cells, and K-L polys exist for real Lie groups.
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DEFINITION. An S-labeled graph I' = (V,m, 7) is admissible if
e it is edge-symmetric; i.e.,
m(u —v) =m(v —u) if 7(u) € 7(v) and 7(v) € 7(u),
e all edge weights m(u — v) are nonnegative integers, and

e it is bipartite.

MAIN HYPOTHESIS. These axioms capture the W-graphs that we care
about, and are sufficiently rigid that there should be few “synthetic” cells.
Sufficient understanding of admissible W-cells could yield constructions of

K-L cells without having to compute K-L polynomials.

EXAMPLE. The admissible A4-cells:
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All of these are K-L cells; none are synthetic.



The admissible Dy-cells (three are synthetic):
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3. The Agenda
PROBLEM 1 (W finite). Are there finitely many admissible W -cells?
e Confirmed for Aq,...,Ag, Bs, B3, D4, D5, D¢, Eg, and rank 2.
PROBLEM 2. Classify/generate all admissible W -cells.

e Are the only admissible A,-cells the K-L cells?

e Caution (McLarnan-Warrington): Interesting things happen in Ajs.
PROBLEM 3. Understand “combinatorial rigidity” for cells.

e Rigidity means M (I';) = M(I'y) (as W-reps) = I'1 = I's.
e Example: Are K-L cells rigid? True for A,,.

e Admissible W-cells are not rigid in general.
PROBLEM 4. Understand “compressibility” of cells.

e A given cell or W-graph should be recursively constructible from a

small amount of data.



4. The Admissible Cells in Rank 2
Consider W = I3(m), m < co. (When m = oo, anything goes.)

Given an I5(m)-graph, partition the vertices according to 7:

Focus on non-trivial cells: 7(v) = {1} or {2} for all v € V.
Encode edge weights {1} — {2} (resp., {2} — {1}) by a matrix A (resp. B).
The conditions on A and B are as follows:

em=2: A=0,B=0.

em=3 AB=1, BA=1.

em=4: ABA=2A, BAB =2B.

em=>5 ABAB—-3AB+1=0, BABA—-3BA+1=0.

REMARKS.
e If we assume only Z-weights, no classification is possible (cf. m = 3).
e Edge symmetry < A = B

e When m = 3, edge weights € Z7° = edge symmetry, but not in general.



THEOREM 1. A 2-colored graph is an admissible Is(m)-cell iff it is a prop-

erly 2-colored A-D-FE Dynkin diagram whose Coxeter number divides m.

ExXAMPLE. The Dynkin diagrams with Coxeter number dividing 6 are Ay,

As, Dy, and As. Therefore, the (nontrivial) admissible G2-cells are

@ O—O—O—O
® O—O—0O—0

NoOTE: The nontrival K-L cells for I3(m) are paths of length m — 2.

Proof Sketch. Let T' be any properly 2-colored graph.

Let M = [Sl lg] encode the edge weights of I".
in m#
Let ¢, (t) be the Chebyshev polynomial such that ¢,,(2cosf) = 8181’177; :
in

Then I' is an Iy(m)-cell < ¢,,(M) =0

< M is diagonalizable with eigenvalues C {2 cos(mj/m): 1< j < m}.
Now assume I is admissible (M = M?, Z>%-entries).
If " is an Is(m)-cell, then 2 — M is positive definite.
Hence, 2 — M is a (symmetric) Cartan matrix of finite type.
Conversely, let A be any Cartan matrix of finite type (symmetric or not).
Then the eigenvalues of A are 2 — 2cos(me;/h), where eg,ez,... are the

exponents and h is the Coxeter number. [



5. Combinatorial Characterization

For brevity, we restrict to the simply-laced case.

THEOREM 2. (Assume (W,S) is simply-laced.) An admissible S-labeled
graph is a W-graph if and only if it satisfies

e the Compatibility Rule,
e the Simplicity Rule,

e the Frontier Rule,

e the Diamond Rule, and

e the Hexagon Rule.

THE COMPATIBILITY RULE (applies to all W-graphs for all W):
If m(u — v) # 0, then
every i € T(u) — 7(v) is bonded to every j € T(v) — 7(u).

Necessity follows from analyzing commuting braid relations.
REFORMULATION: Define the compatibility graph Comp(W, S):

o vertex set 2° = 2["],

e edges I — J when [ D J,

e edges | —J when I ¢ J and J ¢ I and

every ¢ € I — J is bonded to every j € J — 1.

Compatibility means that 7 : I' — Comp(W, S) is a graph morphism.



Compatibility graphs for As, A4, and Dy:
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THE SIMPLICITY RULE (applies whenever o(s;s;) < oo for all ¢, j):
All edges are either simple or are inclusion arcs.
That is, m(u — v) # 0 implies m(u — v) = m(v — u) =1 or 7(u) D 7(v).

Necessity follows from Theorem 1.

THE FRONTIER RULE (simply-laced only):
For each simple edge u — v, define
Bonds(u,v) := {{i,7} : i € 7(u) — 7(v), j € 7(v) — 7(u)}.
Compatibility = this is a set of bonds in the Dynkin diagram of (W, .S).
Define the frontier of v:
Fr(v) := {bonds {i,j} :i € 7(v), j ¢ 7(v)}.
The Frontier Rule requires that

Fr(v) = U Bonds(u,v)  (disjoint union).

U:uUu—v

Necessity follows from the m = 3 case of Theorem 1.

EXAMPLE. Say (W,5) =1—%-2-"-3-¢ 4% 5and 7(v) = {1,3,4}.
Then Fr(v) = {a,b,d} and

135—2-134— 24 s legal at v,

135—%134—2 934 is not.

REMARK. The Compatibility, Simplicity, and Frontier Rules suffice to

determine all admissible As-cells.



[Compare with G. Lusztig, Represent. Theory 1 (1997), Prop. A.4.]
Define V;/; :={veV:iet(v), j & 7(v)}.

THE DIAMOND RULE:

For all i # j and all vertices u,v such that i,j € T7(u) and i,j ¢ 7(v),

Z m(u — w)m(w — v) = Z m(u — w)m(w — v).

weVy; weVjy;

THE HEXAGON RULE:

For all bonded {i,j} and all vertices u,v such thati,j € 7(u) andi,j ¢ 7(v),

Z m(u — w)m(w' — v) = Z m(u — w)m(w — v),

weVi; weV;y;
where w' is the unique vertex in Vj,; such that m(w — w') = 1.
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