David Vogan: Generalized induction

Notes by Siddhartha Sahi

Spring 2008 Atlas conference

1 Goal

The goal is to define a generalized induction functor

 $I: \{ \begin{array}{cc} \text{virtual characters of} \\ \text{Levi subgroup} \end{array} \} \rightarrow \{ \begin{array}{cc} \text{virtual characters of} \\ \text{real reductive group} \end{array} \}$

and compute the action of I on irreducible modules using atlas.

If the Levi subgroup comes from a real (resp. θ stable parabolic) I should reduce to ordinary (resp. cohomological) parabolic induction.

2 Geometry

We fix the following notation:

 $\mathcal{B} = \mathcal{B}(G)$: flag variety of Borel subgroups of a complex reductive group G. \mathcal{P}_S : partial flag variety of parabolic subgroups of type $S \subset \Sigma$ (simple roots). $\pi_S : \mathcal{B} \to \mathcal{P}_S$ – the natural projection. Recall from Peter Trapa's lecture:

Given $K \subset G$ (fixed points of some involution), write kgb(G, K) for the set of K orbits on \mathcal{B} . Then we have for each $s \in \Sigma$, an idempotent operation $\mathcal{O} \mapsto s(\mathcal{O})$ on kgb(G, K). Here $s(\mathcal{O})$ is the unique open K-orbit in $\pi_{\{s\}}^{-1}\pi_{\{s\}}(\mathcal{O})$.

We have $\mathcal{O} \subset \overline{s(\mathcal{O})}$; and either $\mathcal{O} = s(\mathcal{O})$ or dim $(s(\mathcal{O})) = \dim(\mathcal{O}) + 1$.

Define \sim_S to be the equivalence relation on kgb (G, K) generated by $\mathcal{O} \sim s(\mathcal{O})$ for all $s \in S$. Each \sim_S equivalence class has a unique maximal element, which has both largest length and greatest dimension. These distinguished maximal elements correspond to elements of kgb in which each root $s \in S$ is of type c, r or C- (cross action decreases length).

Problem 1 Relate the structure of an individual \sim_S equivalence class C to kgb(L, M) where $L = L_{S,C}$ is a Levi subgroup of G.

Ideally we would like M to be the fixed points of some involution of L, but this is not always possible. However the problem will be solvable if we slightly enlarge the class of allowable subgroups M.

3 Easy example

Suppose G, K have equal rank, let C be an \sim_S equivalence class containing a minimal element \mathcal{O} of kgb (G, K). Then \mathcal{O} is closed, and all simple roots are labeled c or n (they are all imaginary). Fix a Borel subgroup $B_{S,C}$ in \mathcal{O} , and let $Q_{S,C} = L_{S,C}U_{S,C}$ be the $(\theta$ -stable) parabolic subgroup of type S containing $B_{S,C}$. Then we get a map

$$\iota = \iota_C : \mathcal{B}(L_{S,C}) \to \mathcal{B}(G), \quad \iota(B_1) = B_1 U_{S,C}$$

Proposition 2 The map ι gives a bijection between kgb $(L_{S,C}, L_{S,C}^{\theta})$ and C.

The map ι is compatible with cohomological induction I_C via $\mathfrak{q}_{S,C}$, and so we get a bijection

 I_C : {irrs for $L_{S,C}$ } \mapsto {irrs for G supported on orbits in C}

Moreover, under I_C we have

{KL polynomials for $L_{S,C}$ } \mapsto {KL polys for G indexed by pairs in C}

4 Further example

We consider the group U(2, 1). In this case the **block** and kgb commands give the same output (all local systems are trivial). The Dynkin diagram and the idempotent action on the **block/kgb** (using **atlas** labels) looks like this:

The closed orbits are 0, 1 and 2. We fix $S = \{s\}$ corresponding to the first node in the Dynkin diagram. Then the maximal elements are 2, 4 and 5, with equivalence classes $C_2 = \{2\}$, $C_4 = \{0, 1, 4\}$, $C_5 = \{3, 5\}$. The classes $C_2 = \{2\}$, C_4 are "easy" and correspond to the θ -stable Levi subgroups $L_2 = U(1) \times U(2)$ and $L_4 = U(1) \times U(1, 1)$, respectively. The problem is to understand the equivalence class C_5 .

We would like to have that

 C_5 (and its corresponding block) \longleftrightarrow kgb (L_5) , block (L_5)

for some real form L_5 of $GL(2) \times GL(1)$. It seems at first that $GL(2, \mathbb{R}) \times U(1)$ might work since kgb $(GL(2, \mathbb{R}))$ looks like C_5 . However block $(GL(2, \mathbb{R}))$ has three elements.

5 Generalizing the Atlas setup

What is really going in the previous example is that C_5 corresponds to the Bruhat order on the Weyl group $W = W(A_1)$. The structure involved is not that of "K"-orbits but rather "B"-orbits on the flag variety of GL(2). To understand this in general, we need to extend the atlas setup to study the action of a more general class of subgroups on the flag variety.

Start with $G \supset B \supset T$, fix a parabolic subgroup $Q_I = L_I U_I$ corresponding to $I \subset \Sigma$, and a Cartan involution θ_I of L_I . Define $K_I = L_I^{\theta_I} U_I$. Thus $K_{\Sigma} = "K"$ while $K_{\emptyset} = "B"$. K_I acts on G/B with finitely many orbits; one can study the corresponding Harish-Chandra modules, localizations, KL polynomials etc.

Proposition 3 One has

$$\{K_{I}\text{-}orbits \ on \ G/B\} \longleftrightarrow \{L_{I}^{\theta_{I}}\text{-}orbits \ on \ L_{I}/B \cap L_{I}\} \times \{Q_{I}\text{-}orbits \ on \ G/B\} \\ \longleftrightarrow \mathsf{kgb}\left(L_{I}, L_{I}^{\theta_{I}}\right) \times W/W_{I}$$

Fix a K_I orbit \mathcal{O} on G/B. Its \sim_S equivalence class is $C = \{\text{orbits of } K_I \text{ on } \pi_S^{-1}(\pi_S(\mathcal{O}))\}$. This should be given as follows: Let B' be a Borel subgroup in \mathcal{O} and let $Q_S = L_S U_S$ be the parabolic subgroup of type S containing B'.

Problem 4 (Generalization of Problem 1)

- 1. Show that $C \longleftrightarrow \{Q_S \cap K_I/U_S \cap K_I \text{-orbits on } L_S/B' \cap L_S\} \times W/W_S$
- 2. Show that $Q_S \cap K_I/U_S \cap K_I$ is a "nice" $K_J = L_J^{\theta_J}U_J \subset L_S$.
- 3. Conclude that \sim_S equivalence class of \mathcal{O} in $\{kgb \text{ or block for } (G, K_I)\} \leftrightarrow \{kgb \text{ or block for } (L_J, L_J^{\theta_J})\} \times W/W_J$.

6 Induction functor

The natural bijection in the previous problem should be implemented on standard modules by an alternating sum of cohomological induction functors corresponding to the parabolic subalgebra q_S . To study this induction:

- 1. Start with an irreducible module X in a block of L_S at infinitesimal character $w(\rho_G)$ for $w \in W/W_L$.
- 2. Express X as a combination of standard modules using KL algorithm for L_S .
- 3. Apply induction to get a combination of standard modules for G at infinitesimal character ρ_G .
- 4. Express result in terms of irreducible modules for G, using KL for dual block of ${}^{\vee}G$.
- It is possible (and desirable) to program atlas to implement this procedure.