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The Atlas Setting

Goal: parameterize ĜR,unitary

GR : a real reductive Lie group realizable as the set of real points of a
reductive algebraic group defined over R;

ĜR,unitary ⊂ ĜR,adm : set of equivalence classes of irreducible
admissible representations

Lλ : a set of Langlands parameters for irreducible admissible
representations of regular integral infinitesimal character λ (a
finite set).

HCλ = {Vx = πx |K -finite | x ∈ Lλ}: set of irreducible Harish-Chandra
modules corresponding to irreducible admissible representations
πx ∈ ĜR, x ∈ Lλ.

The Atlas software catalogs and analyzes HCλ.
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Notation / Lie Algebraic Apparatus

g = Lie (GR)C; h, a CSA for g;
∆ = ∆ (h, g), roots of h in g;
Π ⊂ ∆, choice of simple roots in ∆;

G : adjoint group of g

Ng : nilpotent cone in g (identifying g∗ with g)

Ox : nilpotent orbit attached to x ∈ Lλ
x → Ann(Vx) ⊂ U(g) gr

−−−−→
Ix ⊂ S(g)→ Ox ⊂ Ng

x ∈ Lλ, with λ regular, integral inf. char.
=⇒ Ox is special nilpotent orbit.

Set S ≡ {special nilpotent orbits}
d : G\Ng → S : the Spaltenstein-Barbasch-Vogan duality map that
restricts to an involution on S = image(d).
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Cells of Harish-Chandra modules

Definition: Let x , y ∈ Lλ. Write x ⇀ y if there exists a f.d. rep F
occurring in T (g) such that

Vy occurs as subquotient of Vx ⊗ F

A cell of H-C modules is a maximal collection of x ∈ Lλ such that

x , y ∈ C =⇒ x ⇀ y and y ⇀ x

Easy facts:

(i) Lλ =
∐

cells C

C

(ii) If x , y ∈ C , then AV(Vx) = AV(Vy )
AV(Vx) ≡ associated variety of H-C module Vx , a union of KC-orbits
in (g/k)∗

(iii) (ii) implies
x , y ∈ C =⇒ Ox = Oy
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Problem: which cells correspond to which special nilpotent orbits?

The association
cell −→ special orbit

will be several to one.

(the associated variety of representation is a finer invariant than the
associated variety of its annihilator)
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Atlas Output

The Atlas software not only catalogs the KLV polynomials for the
representations in Lρ, it computes the entire W -graph of Lρ: a weighted
directed graph such that

vertices ↔ x ∈ Lρ
vertex weights ↔ descent sets τ(x) of x ∈ Lρ
For each x ∈ Lλ, τ(x) is a certain subset of Π
τ(x) is the tau invariant of Ann(Vx).

edges ↔ relations y → x ≡ Vy occurs in Vx ⊗ g

edge multiplicities: mult(y → x) = multiplicity of Vy in Vx ⊗ g

H-C cells correspond to bidirectionally connected subgraphs
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Example: the big block of the split real form of G2.

block element descent set (edge vertex,multiplicity)
0 {} {}
1 {2} {(3,1)}
2 {1} {(4,1)}
3 {1} {(0,1),(1,1),(6,1)}
4 {2} {(0,1),(2,1),(5,1)}
5 {1} {(4,1),(8,1)}
6 {2} {(3,1),(7,1)}
7 {1} {(6,1),(11,1)}
8 {2} {(5,1),(10,1)}
9 {1,2} {(7,1),(8,1)}
10 {1} {(8,1)}
11 {2} {(7,1)}
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The W -graph for this block thus looks like
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Cell # Members
0 0
1 1, 3, 6, 7, 11
2 2, 4, 5, 8, 10
3 9
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The Spaltenstein-Vogan Criterion

Theorem. (Spaltenstein, Vogan) Suppose C is a cell of H-C modules with
associated special nilpotent orbit OC and let l be a (standard) Levi
subalgebra of g. Then

OC ⊂ indg
l (0l) ⇐⇒ ∃ x ∈ C s.t. Πl ⊂ τ(x)

where Πl = the simple roots of l. Here Πl ⊂ Πg and

indg
l (0l) ≡ unique dense orbit in G · n

where n is nilradical of any parabolic subalgebra of g with Levi factor l.

Orbits of the form indg
l (0l) are called Richardson orbits.

Upshot: tau invariants of a cell constrain which Richardson orbit closures
can contain OC
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Problem: Every Richardson orbit is special, but not every special orbit is
Richardson.

How do we separate configurations like

OC = ORichardson

OC ′ = Ospecial

OO
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Levi subalgebras and Richardson orbits

Γ ⊂ Π : a subset of the simple roots.

lΓ : standard Levi subalgebra attached to

lΓ = h +
∑
α∈〈Γ〉

gα

RΓ = indg
lΓ

(0lΓ) : the Richardson orbit induced from the trivial orbit of
a Levi subalgebra lΓ of g

Fact: every special orbit O is determined by

(i) the Richardson orbits that contain O
(ii) the Richardon orbits that contain d(O)

David Vogan’s Idea: The tau invariants of a cell should tell us which
Richardson orbits contain OC and which Richardson orbits contain the
SBV dual of OC .
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Tau signatures for cells

Set
τ(C ) ≡ {τ(x) | x ∈ C}

Facts

# distinct τ(C ) = # special nilpotent orbits

Let
τ∨(C ) = {Π− τ(x) | x ∈ C}

then τ(C ) 7→ τ∨(C ) is an involution on {τ(C )}.
=⇒ Spaltenstein-Barbasch-Vogan duality for tau sets.

Birne Binegar (Oklahoma State University) Tau signatures, Cells and Orbits
Atlas Workshop, March 18, 2008 12 /

1



Definition:

Ψ = {Γ ⊂ Π} : a set of standard Gammas: a collection of Γ ∈ 2Π such
that

i : Ψ↔ {conjugacy classes of Levi subalebras}

is a bijection.

Let Γ, Γ′ ∈ Ψ and let lΓ and lΓ′ be the corresponding standard Levi
subalgebras of g. We shall say

Γ ≤ Γ′ ⇐⇒ indg
lΓ

(0) ⊂ indg
lΓ′

(0)

Remark: this ordering tends to reverse the ordering by cardinality.

Definition: The tau signature of an H-C cell C is the pair

τsig (C ) ≡
(
min (τ(C ) ∩Ψ) , min

(
τ∨(C ) ∩Ψ

))
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Tau signatures for Special Orbits

Definition: Let O be a special orbit. The tau signature of O is the pair
(τ (O) , τ∨ (O)) where

τ (O) = min
{

Γ ∈ Ψ | O ⊂ indg
lΓ

(0lΓ)
}

τ∨ (O) = min
{

Γ ∈ Ψ | d (O) ⊂ indg
lΓ

(0lΓ)
}

Corollary (to S-V criterion)

OC = O ⇐⇒ τsig (C ) = τsig (O)
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Example: Special Orbits of D5
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Richardson Orbits of D5
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Tau Signatures of Special Orbits of D5
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Tau signatures for cells in the big block of SO(5, 5)
• 365 representations with inf. char. ρ in big block
• 32 cells in the big block

Output of extract-cells

// Individual cells.

// cell #0:

0[0]: {}

// cell #1:

0[1]: {2} --> 1,2

1[3]: {1} --> 0

2[5]: {3} --> 0,3,4

3[13]: {5} --> 2

4[14]: {4} --> 2

*

*

*

// cell #29:

0[328]: {1,2,4,5} --> 2,3

1[340]: {2,3,4,5} --> 2

2[358]: {1,3,4,5} --> 0,1

3[364]: {1,2,3} --> 0

// cell #30:

0[353]: {1,2,3,4,5}

// cell #31:

0[357]: {1,2,3,4,5}
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cell # tau signature
0 {} , {1,2,3,4,5}
1 {1} , {1,2,3,4}
2 {1} , {2,3,4,5}
3 {1,3} , {1,3,4,5}
* *
* *
* *
28 {2,3,4,5} , {1}
29 {2,3,4,5} , {1}
30 {1,2,3,4,5} , {}
31 {1,2,3,4,5} , {}
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Cell-Orbit Correspondences for SO(5, 5)

{0}

{1}

llllll
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yyyyyyyyy
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RRRR {23, 28, 29}

llll
{26, 27}
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More Generally:

Exceptional Groups: tables by Spaltenstein list induced orbits, and Hasse
diagrams.

Even E8 can be done by hand.

Classical Groups:

Partition classification −→ closure relations

Just need algorithms to determine

which partitions correspond to special orbits;

given Γ ⊂ Π, which partition corresponds to the Richardson orbit
RΓ ≡ indg

lΓ
(0lΓ);

Cell-Orbit correspondences have now been computed for all exceptional
and classical cases up to rank 8.
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Conclusion:

Atlas data =⇒ new algorithm mapping Langlands parameters to
nilpotent orbits.
Key is to first collect Langlands parameters into cells.

Can one actually identify even finer invariants?

Can one tell when Ann(Vx) = Ann(Vy )? (yes!).
What about the associated variety of Vx (union of KC-orbits)?

Representation theoretical intepretations of other combinatorial
aspects of W -graphs?
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