
Algorithms for Representation Theory

These are notes summarizing Jeff Adams’ first talk at the winter
meeting of the Atlas of Lie Groups project, March 2007. They briefly
describe the combinatorics needed to make represetation theoretic cal-
culations on a computer. These have been implemented in software by
Fokko du Cloux.

1. Representation Theory

Representation theory is hard. We begin with a theorem:

Theorem 1.1. Let G be a connected, complex, reductive algebraic
group and let GR be the real points of G. Let H be a Cartan subgroup
of G and suppose that ρ exponentiates to H. Fix a regular, integral
infinitesimal character λ ∈ h∗. Then there is a bijection:

Irreducible representations of GR ←→ {(HR, χ)/GR} ,
w/ infinitesimal character λ

where HR is a Cartan subgroup of GR, χ is a character of HR whose
differential is conjugate to λ, and the action of GR on the set of pairs
(HR, χ) is by conjugation.

Our goal is to find a combinatorial description of this set.

2. Combinatorics - The Tits Groups

Let R be a root system with Weyl group W and choice of simple
roots Π. Form the group:

R∨/2R∨ ∼= (Z2)
n

and denote by mα the element α∨ + 2R∨ for α ∈ Π.

Definition 2.1. The Universal Tits Group W̃u is the group generated
by {σα | α ∈ Π} subject to the following relations:

(1) σ2 = mα

(2) σαi
σαi+1

σαi
= σαi+1

σαi
σαi+1

(Braid Relations)
(3) Let γ ∈ R. Then σαγ∨σα

−1 = sα · γ∨, where the action on the
right is the usual action of the Weyl group on R∨.

The structure of W̃u is given by the following theorem.
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Theorem 2.2. The following sequence is exact:

1→ R∨/2R∨ → W̃u → W → 1

In other words, W̃u = W ×R∨/2R∨ as a set.

We’d like to associate a similar group to our complex group G. To
do this we choose a tuple (G, H, B, {Xα}), where H is a Cartan
subgroup of G, B is a Borel containing H, and {Xα} is a set of simple
roots determined by B. Write N = NormG(H) for the normalizer of
H in G and W = N/H for the Weyl group. For each α ∈ Π choose a
homomorphism

φα : SL2 → G

such that

φα

(
z 0
0 1

z

)
= α∨(z)

and

dφα

(
0 1
0 0

)
= Xα.

Then we define:

σα = φα

(
0 1
−1 0

)
.

So for each α ∈ Π we have an associated σα ∈ N . It turns out that
the σα are uniquely determined for α simple, but they depend on our
choices for {Xα}. The σα can be thought of as representatives in N for
the reflections sα ∈ W .

Definition 2.3. The Tits Group for G is defined to be W̃ = < σα |
α ∈ Π > ⊆ N .

The following is an analog Theorem 2.2 for W̃ .

Theorem 2.4. Let mα = σα
2 and let H0 = < mα > ⊂ H. Then

(1) There is an exact sequence

1→ H0 → W̃ → W → 1

(2) σαi
σαi+1

σαi
= σαi+1

σαi
σαi+1

(Braid Relations)

(3) There exists a unique set theoretic map s : W → W̃ taking a

reduced expression in W to the corresponding expression in W̃ .

The content of (3) is that the section s is well-defined.
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3. The Algorithm

The starting datum for the algorithm will be a pair (G, γ), where G
is our chosen complex group and γ is an inner class of real forms of G.
Let θfund denote the involution corresponding to the fundamental form
of the inner class γ. We then define

GΓ = G o Z2,

where Z2 acts on G via the involution θfund. We can now describe
the main combinatorial objects in which we are interested.

Definition 3.1. X̃ := {x ∈ NormGΓ\G(H) | x2 ∈ Z(G)} where Z(G)
denotes the center of G.

Definition 3.2. X := X̃/H where H acts by conjugation.

Remark 3.3. If G is semi-simple, then the set X is finite.

Example Let G = SL(2, C). Then there is a unique inner class of
real forms and θfund is the identity map. The set X has five distinct
elements up to H conjugacy. Here is a list of representatives:(

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
i 0
0 i

)
,

(
−i 0
0 −i

)
,

(
0 1
−1 0

)
Its clear from the definitions that the normalizer of H acts on the set

X . In fact, since H acts trivially (by definition) this action descends
to W . The group G does not act on X , however it still makes sense to
consider the following set.

Definition 3.4. X [x] = {y ∈ X | y ∼ x} = G · x ∩ X .

For x ∈ X choose a lift η ∈ X̃ and define θη =int(η). This is an
involution of G and we define Kη to be the fixed points of θη, i.e.
Kη = Gθη . Kη is the complexification of a maximal compact subgroup
for the (strong) real form of G corresponding to x. The following
proposition explains our interest in the set X .
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Proposition 3.5. The sets defined above have the following geometric
interpretations (recall G/B is the flag variety):

X [x]↔ Kη\G/B

X ↔
∐
η∈I

Kη\G/B

where I is a set of representatives of elements in G that are lifts of
elements in X .

This proposition suggests that the set X is larger than we might like;
it contains information about orbits on the flag variety for multiple
(strong) real forms. However if we pick an x ∈ X then the set X [x]
contains orbit information about a single real form of G. Thus our
problem is to describe the set X [x]. It turns out that the Tits group
of G allows us to do this.

Fix x ∈ X and choose a lift η ∈ X̃ . If we form the involution θη we
can restrict it to H and get a Cartan involution independent of our lift
η. Call this involution θx. Then θx gives a classification of the roots
of H as real, imaginary, or complex as usual. Furthermore we obtain
a grading on the imaginary roots (compact vs. noncompact) by using
the involution θη. It turns out that this grading is independent of our
choice of lift η.

Lemma 3.6. Given x ∈ X it is possible to choose a lift η of x so that

θη normalizes W̃ .

We can now define the two crucial operations of W̃ on X .

(1) For x ∈ X and σα ∈ W̃ define the cross action of σα on x as
follows:

σα · x := σαθη(σα
−1)x,

where θη is given by the above lemma.
(2) Suppose α is noncompact imaginary for x (this is well-defined

by the above discussion). Define the Cayley transform of x by
α as follows:

x 7→ σαx
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Remark 3.7. It is not obvious that Cayley transforms preserve the set
X [x]. It is a pleasant fact that they do. This can be verified by an
SL(2) calculation.

We now come to the main theorem:

Theorem 3.8. Let x be a fundamental element (i.e. over the funda-
mental Cartan). Then the set X [x] is equal to the set generated by x
and successive cross actions and (when appropriate) Cayley transforms.
In other words, the set X [x] can be computed inductively.

From a computational standpoint, here is the algorithm. We start
with x in the fundamental fiber and a list containing elements known
to be in X [x] (initially just x). At each step we apply cross actions and
(when appropriate) Cayley transforms to elements in the list and see if
we get anything new. The content of Remark 3.7 is that anything new
we find will belong to X [x]. If we do find something new, we add it
to the list and repeat the process. We continue until no new elements
are found. By Theorem 3.8 this procedure finds every element of X [x].
Thus we have computed the set of KC orbits on the flag variety for the
(strong) real form of G corresponding to x via the combinatorics of the
Tits group. Amazing!
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