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1 Introduction

The algorithm described in [2] for computing KLV polynomials, now imple-
mented in atlas, has a mathematically unsatisfactory character. We have
a partially ordered finite set X of parameters (for irreducible or standard
representations) and we wish to compute a set of polynomials

{Px,y ∈ Z[q] | x ∈ X, y ∈ X}. (1.1)

The set X has a length function

` : X → N (1.2)
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which is compatible with the partial order in the sense that

x < y ⇒ `(x) < `(y).

Some of the fundamental properties of the polynomials (very closely con-
nected to the geometric interpretation given to them by Kazhdan and Lusztig)
include

Py,y = 1, Px,y 6= 0⇒ x ≤ y, (1.3)

and most important of all

degPx,y ≤ (`(y)− `(x)− 1)/2 (x < y). (1.4)

The set X has additional structure related to the set S of simple reflec-
tions. Attached to each x ∈ X is a descent set for x

τ(x) ⊂ S; (1.5)

the complement of τ(x) is the ascent set for x. Each descent has a type,
which is either compact imaginary, complex, real type I, or real type II (ic,
C-, r1, r2). Similarly, each ascent has a type which is real non-parity,
complex, noncompact imaginary type II, or noncompact imaginary type I
(rn, C+, i2, i1). Attached to each descent s of x is a set of 0, 1, 2, or 1
covers in the partial order (with the smaller elements, which are of length
one less, written to the left):

{} ←− x (type ic)

{x′} ←− x (type C-)

{x′, x′′} ←− x (type r1)

{x′} ←− x (type r2).

(1.6)

We call the (zero, one or two) elements {x′, x′′} the s-descents of x. Similarly,
attached to each ascent s there are 0, 1, 2, or 1 elements of X covering x:

x←− {} (type rn)

x←− {x′} (type C+)

x←− {x′, x′′} (type i2)

x←− {x′} (type i1).

(1.7)

The elements {x′, x′′} are called the s-ascents of x.
These special covers “generate” the Bruhat order on X in a simple way

which is worth recalling.
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Proposition 1.8. Suppose y ∈ X.

1. If y has a complex s-descent y′, then every element x covered by y is
either equal to y′, or is an s-ascent of some element covered by y′.

2. If y has a real type 1 s-descent {y′, y′′}, then every element x covered
by y is either equal to y′ or y′′, or is an s-ascent of some element
covered by y′.

3. Suppose y has no complex descents. Then every element covered by y
is an s-descent of y (by some real root of type I or type II).

In particular, if every descent of y is compact imaginary, then y is minimal
in X.

We do not need the second fact (about real type I descents) to describe
the Bruhat order, but include it for completeness.

Here is the approximate nature of the present algorithm for computing
the polynomials Px,y. There is first of all an induction on `(y), and then,
for the collection of all y of a certain length, a downward induction on `(x).
We seek a descent s for y that is either complex or real type I; this is called
a direct recursion. We then fix (one of the two, in the real case) s-descent[s]
y′ for y. The point is that the ascent for y′ is either complex or type I
noncompact imaginary, so the s-ascent of y′ is precisely {y}. We get a
recursion formula for Px,y: this is a main term involving (one or two) P∗,y′ ,
minus a “µ-correction” which involves various P∗,z with z < y′. (These
formulas are more or less on page 249 of [2] (where there are a few typos),
or top of page 8 in [1], or [3], Proposition 6.14, Case I.)

This leaves the case when there is no direct recursion for y; that is, that
every descent of y is either compact or type II real. For every type II real
descent s, leading to a single y′ of length one less, the s-ascent of y′ is two
elements {y, s × y}. We get computable “recursion formulas” as above for
sums Px,y+Px,s×y. The “thicket” of y consists of all the elements z that can
be reached by successive applications of these real cross actions (by various
simple s). All elements of the thicket have the same length as y. There is a
lemma ([2], Lemma 6.2, or [3], Lemma 6.7) that for any x < y, we can find
a z in the thicket so that s is a descent for z, and s is a non-real ascent for
x. In this case (letting {x′} or {x′, x′′} be the s-ascent[s] of x) there is an
easy recursion formula

Px,z = Px′,z or Px,z = Px′z + Px′′,z (1.9)
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([2], page 250, or top of page 5 in [1], or [3], Proposition 6.14, Case II). Then
this can be plugged into the various formulas for Px,z1 +Px,z2 in the thicket,
finally computing Px,y.

What we will explain here is a modification of the algorithm which works
on Bruhat intervals and avoids thickets. First we’ll say a bit more about the
Bruhat order on X.

2 Bruhat order

Definition 2.1. Suppose x ∈ X and s ∈ S. The s-upward smear s ∼ x of
x is a subset of X consisting of x and zero, one, or two additional elements:

1. If s is a descent for x (ic, r1, r2, C-), or s is real nonparity (rn)
then s ∼ x = {x}.

2. If s is a complex ascent or type I imaginary (C+, i1) with s-ascent x′,
then s ∼ x = {x, x′}.

3. If s is type II imaginary (i2) with s-ascent {x′, x′′}, then s ∼ x =
{x, x′, x′′}.

If Z ⊂ X, then we define the s-upward smear s ∼ Z of Z to be

s ∼ Z = ∪z∈Zs ∼ z.

The one surprising feature of this definition is that if s is type II real for
x, we do not include the real cross action s× x in the s-upward smear.

Proposition 2.2. Suppose y ∈ X. Write

X≤y = {z ∈ X | z ≤ y}

for the Bruhat interval.

1. If y is the unique s-ascent of y′ (that is, if s is C- or r1 for y) then

X≤y = s ∼ X≤y′ .

2. If is s is type II real for y, so that the {y, s× y} is the s-ascent of y′,
then

X≤y ∪X≤s×y = s ∼ X≤y′ .
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3. If y has no complex descents, then

X≤y = {y}
⋃

y′ real
descent of y

X≤y
′
.

Sketch of proof. Parts 1)–2) are based on the definition of the Bruhat order
as the transitive closure of the relation of nonvanishing KL polynomial. In
each of these cases we have a formula for Px,y (or Px,y +Px,s×y) which has a
main term that’s a nontrivial combination of Px′,y′ (with x ∈ s ∼ x′) minus a
correction term involving Px′′,y′′ with y′′ < y′. The claims follow. Part 3) is
just a restatement of the last part of Proposition 1.8 in the introduction.

In the third case of the proposition, the Bruhat interval below y is con-
tained in the subset of X generated by y and the simple real reflections for
y. That is, we may study it assuming that G is split and that y is attached
to the split Cartan.

We now look at how this proposition applies to two special cases.

Corollary 2.3. Suppose y0 ∈ X, and that every element of S is imaginary
for y0. (This means that y0 is attached to the compact Cartan in an equal
rank group.) Suppose x ∈ X is not attached to the compact Cartan.

1. If there is a complex s-descent x′ for x, then y0 < x if and only if
either y0 < x′ or s× y0 < x′.

2. If there is no complex descent for x, then y0 < x if and only if there
is a real s-descent x′ of x such that y0 < x′.

This is immediate. Again in the second case, the interval below x is con-
tained in the subset of X generated by x and the simple real real reflections
for x. We may study the interval by assuming that G has both a compact
and a split Cartan, and that x is attached to the split Cartan.

Corollary 2.4. Suppose y1 ∈ X, and that every element of S is real for
y1. (This means that y1 is attached to the split Cartan of a split group.)
Suppose x ∈ X is not attached to the split Cartan.

1. If there is a complex s-ascent x′ for x, then y1 > x if and only if either
y1 > x′ or s× y1 > x′.

2. If there is no complex ascent for x, then y1 > x if and only if there is
an imaginary s-ascent x′ of x such that y1 > x′.

5



This is the preceding corollary applied to the dual block. In the second
case the interval above x is contained in the subset of X generated by x
and the imaginary reflections for x. We may study the interval by assuming
that G has both a split and a compact Cartan, and that x is attached to
the split Cartan.

3 New algorithm

The induction is first of all increasing on y in the Bruhat order, and then
(for a single fixed y) by decreasing induction on x in the Bruhat order. The
first step in the algorithm is exactly as at present: we seek a descent for y
that is either complex or real type I; this is a direct recursion as above, and
the formula for Px,y involves only P∗,z with z either an s-descent of y, or else
below such an s descent in the Bruhat order (and therefore strictly below
y).

We may therefore assume that no such direct recursion exists; or (a
weaker assumption) that

each descent of y is real or compact imaginary. (split1)

Remember that in this case the Bruhat interval below y lives inside the
subset of X generated by the simple real roots for y. Essentially we can
think that

G is split, and y is attached to the split Cartan. (split2)

(Computationally this just means that we make use only of the simple roots
that are real for y.) We want to compute Px,y, assuming that we know all
Pz,y with z > x and all Pz1,y1 with y1 < y. We may assume x ≤ y (or else
the polynomial is zero). If x = y the polynomial is 1; so assume x < y.
Then Corollary 2.4 says

Lemma 3.1. Under the hypotheses (split1) and (split2), suppose that x < y.
Then there is an s ∈ S (real for y) such that either

1. s is C+ for x, with s-ascent x′; or

2. s is i2 for x, with s-ascents {x′, x′′}, and x′ ≤ y; or

3. s is i1 for x, with s-ascent x′ ≤ y.
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(In case 1), we don’t care whether x′ is less than y or not; if it is not,
then the polynomial Px′,y that we need below is zero.)

If s is a descent for y, then the “easy recursion” of (1.9) applies to
compute Px,y. We may therefore assume henceforth that

each complex or imaginary ascent s for x is rn for y. (split3)

Using the lemma, we fix such an ascent s for x. Formula (6.15) of [3] says

(Ts + 1)Cy =
∑

z<y, s∈τ(z)

µ(z, y)q(`(y)−`(z)+1)/2Cz. (3.2)

The coefficient of x on the left side is
Px,y + qPx′,y (s C+ for x)

2Px,y + (q − 1)(Px′,y + Px′′,y) (s i2 for x)

Px,y + Ps×x,y + (q − 1)Px′,y (s i1 for x).

(3.3)

The coefficient of x on the right side of (3.2) is∑
x<z<y
s∈τ(z)

µ(z, y)q(`(y)−`(z)+1)/2Px,z. (3.4)

In cases (1) and (2), this leads to a straightforward recursion formula for
Px,y; for example, if s is i2 for x, we get

2Px,y =− (q − 1)(Px′,y + Px′′,y)

+
∑
x<z<y
s∈τ(z)

µ(z, y)q(`(y)−`(z)+1)/2Px,z, (s i2 for x) (3.5)

All the terms on the right are known by inductive hypothesis (including
µ(z, y), which is a coefficient of some Pz,y with z > x).

Px,y + Ps×x,y =− (q − 1)Px′,y

+
∑
x<z<y
s∈τ(z)

µ(z, y)q(`(y)−`(z)+1)/2Px,z, (s i1 for x) (3.6)

We can make a parallel analysis when s is ic for x and rn for y. In this
case the coefficient of x on the left side of (3.2) is (q + 1)Px,y, and on the
right it is ∑

z<y, s∈τ(z)

µ(z, y)q(`(y)−`(z)+1)/2Px,z.
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We therefore get a formula

(q + 1)Px,y =µ(x, y)q(`(y)−`(x)+1)/2

+
∑
x<z<y
s∈τ(z)

µ(z, y)q(`(y)−`(z)+1)/2Px,z. (3.7)

We know the sum by inductive hypothesis; but the first term on the right
is by definition the leading term on the left. The conclusion is that the
formula (3.7) determines every coefficient of (q + 1)Px,y except the one of
highest degree. But if we use the fact that (q+1)Px,y must vanish at q = −1,
we can then compute the highest degree term (as the alternating sum of the
remaining terms).

These recursions fail to compute Px,y only under the following conditions
on x < y:

1. there are no complex descents for y;

2. among the s which are real for y, there are no complex ascents for x;

3. among the s which are real for y and imaginary for x, each r1 or r2

descent for y is an ic descent for x.

4. among the s which are real for y and imaginary for x, each rn ascent
for y is an i2 or i1 ascent for x.

Essentially the first two conditions allow us to reduce to the case that G is
split and equal rank, y is attached to the split Cartan, and x is attached
to the compact Cartan. Then the last two conditions mean that nonparity
simple roots for y correspond precisely to noncompact simple roots for x.
(The “direct recursion” for an r1 descent of y and for an i2 ascent of x
allow us to assume also that the descents for y are all r2, and the ascents of
x are all i1. But this additional restriction is not very useful or important.)

Here’s a way to deal with these remaining cases. It’s along the lines of
Thicket but enormously simplified because of the new recursion formulas.
Because the block has both a compact and a split Cartan (and x 6= y) there
must be some real descents for y, which means that there are some ic simple
roots for x. Except in G2, the long simple roots cannot all be compact in
the split form; so

there is a “long” i1 or i2 s for x adjacent to an ic t for x; (endgame)

here “long” means “long except in G2.” Write α for the simple root corre-
sponding to s, and β for the simple root corresponding to t, in some positive
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system related to the parameter x. The assumptions in (endgame) mean
that

α is noncompact and β is compact.

Because β is “long” and adjacent to α,

s(β) = β + (odd multiple of α),

Therefore s(β) is a noncompact root, which means that the status of t for
s× x is noncompact imaginary.

Here is a table of the status of s and t:

block elt s t
x i1 or i2 ic

s× x i1 or i2 i1 or i2
y rn r2

(3.8)

(The second column shows that s×x 6= x, and therefore that s must in fact
be i1 for x.) Then t gives a direct recursion to compute Ps×x,y, and s gives
through (3.6) a formula for Px,y + Ps×x,y. Then Px,y is the difference.

Final comment (DV): I think I proved that if G is equal rank and split,
X is the big block, x ∈ X is attached to the compact Cartan, and y ∈ X
is attached to the split Cartan, then necessarily x < y. But of course Px,y
might be zero.

References

[1] Fokko du Cloux and Jeffrey Adams, Implementation of the Kazhdan-
Lusztig algorithm (2011).

[2] David A. Vogan Jr., The Kazhdan-Lusztig conjecture for real reductive
groups, Representation theory of reductive groups (Park City, Utah,
1982), Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983,
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