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Abstract. Suppose G = G(R) is the group of real points of a com-
plex connected reductive algebraic group, and K is a maximal compact
subgroup of G. The classical branching problem here is to determine
the restriction to K of a standard representation of G. Implicit in the
branching problem are the problems of parametrizing both irreducible
representations of K and standard representations of G. We address
these three problems, looking for answers amenable to computer imple-
mentation.

Contents

1. Introduction 2
2. Highest weights for K 4
3. The R-group of K and irreducible representations of the large

Cartan 10
4. Fundamental series, limits, and continuations 17
5. Characters of compact tori 22
6. Split tori and representations of K 24
7. Parametrizing extended weights 29
8. Proof of Lemma 7.13 34
9. Highest weights for K and θ-stable parabolic subalgebras 36
10. Standard representations, limits, and continuations 38
11. More constructions of standard representations 46
12. From highest weights to discrete final limit parameters 54
13. Algorithm for projecting a weight on the dominant Weyl

chamber 55
14. Making a list of representations of K 58
15. G-spherical representations as sums of standard representations 63
References 66

[Comments and questions are in square brackets throughout, so you can
find what confused me by searching for those.]

Date: March 27, 2006.

1



2 DAVID A. VOGAN, JR.

1. Introduction

For a Lie group H we will write H0 for the identity component, h0 for the
real Lie algebra, and h = h0⊗R C for its complexification. If H is a complex
algebraic group, we sometimes write simply H instead of H(C). The group
of real points will be written

(1.1) H = H(R).

The notation allows for various kinds of ambiguity, since for example the
same real Lie group H may appear as the group of real points of several
distinct algebraic groups H.

We write a subscript e for the identity component functor on complex
algebraic groups. The group of complex points of the identity component is
the classical identity component of the group of complex points:

(1.2a) He(C) = [H(C)]0.

The group of real points of a connected algebraic group may however be
disconnected, so we have in general only an inclusion

(1.2b) He(R) ⊃ [H(R)]0;

Briefly (but perhaps less illuminatingly)

(1.2c) He ⊃ H0.

If H(R) is compact, then equality holds:

(1.2d) He(R) = [H(R)]0 (H(R) compact).

That is,

(1.2e) He = H0 (H compact).

Definition 1.3. We fix once and for all a complex connected reductive
algebraic group G, together with a real form; that is, a complex conjugate-
linear involutive automorphism

σ : G(C)→ G(C).

(When this is all translated into the atlas setting with several real forms, it
will be convenient to define a strong real form to be a particular choice of
representative for σ in an appropriate extended group containing G(C) as
a subgroup of index two. I am avoiding that by speaking always of a single
real form.) The corresponding group of real points is

G(R, σ) = G(R) = G(σ) = G

= G(C)σ;

here the second line defines the notation introduced in the first.

Definition 1.4. A Cartan involution for the real group G is an algebraic
involutive automorphism θ of G subject to

(1) The automorphisms σ and θ commute: σθ = θσ.
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(2) The composite (conjugate-linear) involutive automorphism σθ has
as fixed points a compact real form U of G.

The second requirement is equivalent to

(2′) The group of fixed points of θ on G is a maximal compact subgroup
K of G:

Gθ = K.

Under these conditions, the complexification of the compact Lie group K is
equal to Gθ:

K = Gθ.

The action of θ on the complex Lie algebra g defines an eigenspace de-
composition

(1.5) g = k + s,

with s the −1 eigenspace of θ. This decomposition is inherited by any
θ-stable real or complex subspace of g. The letter s is chosen to suggest
“symmetric,” since whenG is GLn(R) we can take θ to be negative transpose
on the Lie algebra.

Almost all the real Lie groups here are going to be groups of real points
of complex algebraic groups. In general an identification of a real Lie group
with such a group of real points need not be unique even if it exists. But
there is one very important special case when the algebraic group is unique.
Any compact (possibly disconnected) Lie group S is a compact real form
of a canonically defined complex reductive algebraic group S. The complex
algebra of regular functions on S is the complex algebra of matrix coefficients
of finite-dimensional representations of S (and so S is by definition the
spectrum of this ring).

This explicit description of S shows that if S is a closed subgroup of
another compact Lie group K, then S is canonically an algebraic subgroup
of K defined over R.

The complexification of the unitary group Un may be naturally identified
with the complex general linear group GLn(C). (Another dangerous bend
here: the corresponding real form of GLn(C) is given by inverse conjugate
transpose. This is not the standard real form, given by complex conjugation,
which is (one of the reasons) why Un is not the same as GLn(R).) Pursuing
this a bit shows that a continuous morphism from a compact group S to
Un is the restriction of a unique algebraic morphism of S into GLn. That
is, continuous representations of the compact Lie group S may be identified
with algebraic representations of S.

The involutive automorphism θ is unique up to conjugation by G. Again
in the setting of the atlas software we will keep a strong Cartan involution,
a choice of representative for θ in an extended group for G. (This extended
group is not the same as the one containing σ, since that one contains
conjugate-linear automorphisms).

Here is some general notation for representations.
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Definition 1.6. Suppose H is a complex algebraic group. The set of equiv-
alence classes of irreducible (necessarily finite-dimensional) algebraic repre-
sentations of H is written

Π∗
alg(H) = Π∗(H),

the algebraic dual of H. If H is a complex torus, then these representations
are all one-dimensional, providing a canonical identification

Π∗(H) ' X∗(H)

(the term on the right being the lattice of characters of H).
Suppose H is reductive and defined over R, and that H is compact. Ac-

cording to the remarks after Definition 1.4, restriction toH provides a canon-
ical identification

Π∗(H) ' Ĥ,

with Ĥ denoting the set of equivalence classes of continuous irreducible
representations of H. Because of this identification, we will use the more
suggestive notation

Π∗
adm(H) = Π∗(H)

for Ĥ, calling it the admissible dual of H. Then the canonical identification
looks like

Π∗
alg(H) ' Π∗

adm(H) (H compact).

The term “continuous dual” makes more sense than “admissible dual” for
H compact, but we have chosen the latter to fit with the following general-
ization.

Suppose that H is reductive and defined over R, and that L is a maximal
compact subgroup of H. The admissible dual of H is

Π∗
adm(H) = Π∗(H) = equivalence classes of irreducible (h, L)-modules;

this set is often written Ĥ.
If L′ is another maximal compact subgroup of H, then we know that

L′ is conjugate to L by Ad(h), for some element h ∈ H. Twisting by h
carries (irreducible) (h, L)-modules to (irreducible) (h, L′)-modules, and the
correspondence of irreducibles is independent of the choice of h carrying L
to L′. For this reason we can omit the dependence of Π∗(H) on L.

Our goal is to parametrize Π∗(G) and Π∗(K) (that is, Ĝ and K̂) in com-
patible and computer-friendly ways. We will begin with K.

2. Highest weights for K

The phrase “maximal torus” can refer to a product of circles in a compact
Lie group; or to a product of copies of C× in a complex reductive algebraic
group; or to the group of real points of a complex maximal torus (which is
isomorphic to a product of circles, R×, and C×). I’ll use all three meanings,
sometimes with an adjective “compact” or “complex” or “real” to clarify.
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Definition 2.1. Choose a compact maximal torus

Tf,0 ⊂ K0;

that is, a maximal connected abelian subgroup. This torus is unique up to
conjugation by K0. Then Tf,0 is a product of circles, and its complexification
may be identified canonically with a complex maximal torus

Tf,0 ⊂ Ke

The centralizer

Hf = ZG(Tf,0)

is a θ-stable maximal torus in G (this requires proof, but is not difficult)
that is defined over R. The group Hf = Hf (R) is a real maximal torus of
G, called a fundamental Cartan subgroup; it is the centralizer in G of Tf,0,
and is unique up to conjugation by K0.

Define

Tf = Hθ
f = Hf ∩K = ZK(Tf,0).

The group of real points is

Tf = Hθ
f = Hf ∩K = ZK(Tf,0),

a compact abelian subgroup of K(R) containing the maximal torus Tf,0. In
fact it is easy to see that Tf (R) is a maximal abelian subgroup of K(R) (and
similarly over C); it might reasonably be called a maximally toroidal maximal
abelian subgroup, but I’ll follow [8] and call it a small Cartan subgroup.

The definition of Tf as ZK(Tf,0) is internal to K, and so makes sense for
any compact Lie group. In that generality Tf is a compact Lie group with
identity component the compact torus Tf,0; but Tf need not be abelian. If
we define

K] = {k ∈ K | Ad(k) is an inner automorphism of k},

then

K] = TfK0, K]/Tf ' K0/Tf,0;

all of these equalities remain true for complex points.
Clearly K] is a normal subgroup of K, of finite index. We may therefore

define the R-group of K as

R(K) = K/K] ' K/K].

The R-group is a finite group, equal to the image of K in the outer
automorphism group of the root datum of K0. It will play an important
part in our description of representations of K. For the special groups K
appearing in our setup, we will see that the R-group is a product of copies
of Z/2Z; the number of copies is bounded by the cardinality of a set of
orthogonal simple roots in the Dynkin diagram of G.
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Definition 2.2. Recall from Definition 1.6 that the group of characters of
Tf is

Π∗(Tf ) = continuous characters ξ : Tf → U1

' Π∗(Tf ) = algebraic characters ξ : Tf → C×;

identification of the second definition with the first is by restriction to Tf .
(Here U1 is the circle group, the compact real form of C×.) This is a finitely
generated abelian group. More precisely, restriction to Tf,0 defines a short
exact sequence of finitely generated abelian groups

0→ Π∗(Tf/Tf,0)→ Π∗(Tf )→ Π∗(Tf,0)→ 0;

the image is a lattice (free abelian group) of rank equal to the dimension of
the torus, and the kernel is the (finite) group of characters of the component
group Tf/Tf,0.

We will occasionally refer to the lattice of cocharacters of Tf

Π∗(Tf ) = continuous homomorphisms ξ : U1 → Tf

= algebraic homomorphisms ξ : C× → Tf ;

Clearly such homomorphisms automatically have image in the identity com-
ponent, so Π∗(Tf ) = Π∗(Tf,0). There is a natural bilinear pairing

〈, 〉 : Π∗(Tf )×Π∗(Tf )→ Z;

this pairing is trivial on the torsion subgroup Π∗(Tf/Tf,0), and descends to
the standard identification of Π∗(Tf,0) as the dual lattice of Π∗(Tf,0).

Whenever V is a complex representation of Tf , we write

∆(V, Tf ) = set of weights of Tf on V

regarded as a multiset of elements of Π∗(Tf ).
The most important example of such a set is the root system of Tf in K

∆(K,Tf ) = ∆ (k/tf ) .

In one-to-one correspondence with the root system is the system of coroots
of Tf in K

∆∨(K,Tf ) ⊂ Π∗(Tf );

we write α∨ for the coroot corresponding to the root α.

The difference from the classical definition of root system is that we are
keeping track of the action of the disconnected group Tf . Because the
roots of Tf,0 in K have multiplicity one, the restriction map from Π∗(Tf )
to Π∗(Tf,0) is necessarily one-to-one on this root system. That is, each root
of the connected torus Tf,0 in the connected group K0 extends to a unique
root of Tf . The point of this discussion is that ∆(K,Tf ) is in canonical
one-to-one correspondence with a root system in the classical sense (that of
Tf,0 in K0). We may therefore speak of classical concepts like “system of
positive roots” without fear of reproach.
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Definition 2.3. While we are feeling bold, let us therefore choose a system

∆+(K,Tf ) ⊂ ∆(K,Tf )

of positive roots. Because so much of what we will do depends on this choice,
it will appear constantly in the notation. Simply for notational convenience,
we will therefore use the shorthand

∆+
c = ∆+(K,Tf );

the subscript c stands for “compact.” A representation (µ,Eµ) of Tf is
called dominant (or ∆+

c -dominant if for every positive root α ∈ ∆+
c , and

every character ξ ∈ Π∗(Tf ) occurring in Eµ, we have 〈ξ, α∨〉 ≥ 0. We write

Π∗
∆+

c −dom
(Tf ) = Π∗

dom(Tf )

for the set of dominant weights.
Choice of ∆+

c is equivalent to the choice of a Borel subalgebra

bc = tf + nc.

We want to use bc to construct representations of K, and for that purpose
it will be convenient to take the roots of the Borel subalgebra to be the
negative roots:

∆(nc, Tf ) = −∆+
c .

Define

B]
c = TfNc ⊂ K],

which we call a small Borel subgroup of K. There are several things to

notice here. First, B
]
c and its unipotent radical Nc are not preserved by the

complex structure, so they are not defined over R. Second, the group B
]
c is

disconnected if Tf is; we have

Bc,0 = Tf,0Nc ⊂ K0,

a Borel subgroup in the usual sense.
From time to time we will have occasion to refer to the Borel subalgebra

whose roots are the positive roots; the nil radical is σnc (with σ the complex
conjugation). The corresponding small Borel subgroup is σ(Bc,0).

Our first goal is to parametrize representations of K in terms of elements
of Π∗(Tf ), together with a little more information. The point of this is that
Π∗(Tf ) is accessible to the computer. I’ll recall why (in a slightly more
general context) in Section 5.

Before embarking on a precise discussion of representations of K, we need
a few more definitions.

Definition 2.4. In the setting of Definition 2.3, the large Cartan subgroup
of K is

Tfl = normalizer in K of bc

= normalizer in K of nc.
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A representation µl of Tfl is called dominant if its restriction to Tf is
dominant (Definition 2.3). If µl is irreducible, this is equivalent to requiring
that just one weight of Tf in µl be dominant. We write

Π∗
∆+

c −dom
(Tfl) = Π∗

dom(Tfl)

for the set of dominant irreducible representations of Tfl.
Because bc∩σbc = tf , the group Tfl normalizes Tf,0. Its complexification

is

Tfl = normalizer of Tf,0 and Bc,0 in K

= normalizer of Tf,0 and nc in K.

Define

Bcl = normalizer of Bc,0 in K

= normalizer of nc in K

= TflNc.

The equality of the three definitions is an easy exercise; the last description
is a semidirect product with the unipotent factor normal.

Next we introduce the flag varieties that control the representation theory
of K.

Definition 2.5. One of the most fundamental facts about connected com-
pact Lie groups is the identification (defined by the obvious map from left
to right)

(2.6a) K0/Tf,0 ' K0/Bc,0.

This homogeneous space is called the flag variety of K0 (or of K0); it may
be identified with the projective algebraic variety of Borel subalgebras of
k. Especially when we have this interpretation in mind, we may write the
space as X(K0) or X(K0).

For disconnected K we will be interested in at least two versions of this
space. The first is the large flag variety for K (or K)

(2.6b) Xlarge(K) = K/Tf ' K/B]
c.

The right side is a complex projective algebraic variety. This variety has
(many) K-equivariant embeddings in the flag variety for G, corresponding
to the finitely many extensions of bc to a Borel subalgebra of g. But we will
also need to consider the small flag variety for K (or K)

(2.6c) Xsmall(K) = K/Tfl ' K/Bcl.

Since Bcl is by definition the normalizer of bc, the small flag variety may
be identified with the variety of Borel subalgebras of k. It follows that the
inclusion of K0 in K defines a K0-equivariant identification

(2.6d) K0/Tf,0 ' K0/Bc,0 ' K/Bcl ' K/Tfl.
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Because Tf is a subgroup of Tfl, there is a natural K-equivariant surjection

(2.6e) K/Tf = Xlarge(K)→ Xsmall(K) = K/Tfl.

The equivariant geometry here is slightly confusing. Because Tf ∩K0 = Tf,0,

K/Tf is (as an algebraic variety) a union of card(K/K ]) copies of K0/Tf,0.
(Here we write cardS for the cardinality of a set S.) The reason this is the
number of copies is that K0Tf = K]. The projection of (2.6e) sends each
copy isomorphically onto K/Tfl ' K0/Tf,0.

Proposition 2.7. Suppose we are in the setting of Definition 2.4. Then the
group Tfl meets every component of K. We have

Tfl ∩K0 = Tf,0, Tfl ∩K
] = Tf .

Consequently the inclusion of Tfl in K defines natural isomorphisms

Tfl/Tf,0 ' K/K0, Tfl/Tf ' K/K
] = R(K)

(Definition 2.1).

We can now begin to talk about representations of K.

Definition 2.8. Recall from Definition 1.6 the identification

Π∗(K) = equiv. classes of continuous irr. representations of K

' equiv. classes of algebraic irr. representations of K = Π∗(K).

The identification of the second definition with the first is by restriction to
K.

Typically I’ll write (τ, Vτ ) for a representation of K (not necessarily irre-
ducible). The highest weight space of τ is

V h
τ = Vτ/ncVτ ,

the subspace of coinvariants for the Lie algebra nc in Vτ . Recall that nc

corresponds to negative roots; for that reason, V h
τ may be naturally iden-

tified with the subspace of vectors annihilated by the positive root vectors.
Explicitly,

V σnc
τ ' V h

τ

by composing the inclusion of left side in Vτ with the quotient map. Of
course it is this second definition of highest weight space that is more com-
monly stated, but the first is going to be more natural for us. It is clear
from Definition 2.4 that the large Cartan subgroup Tfl acts on V h

τ ; write

µl(τ) : Tfl → End(V h
τ )

for the corresponding representation. Of course we may also regard µl(τ) as
a representation of Tf , Tf,0, Tfl, Bcl, and so on.

Proposition 2.9. Suppose we are in the setting of Definitions 1.4 and 2.4.
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(1) Passage to highest weight vectors (Definition 2.8) defines a bijection

Π∗(K)→ Π∗
dom(Tfl), τ 7→ µl(τ)

from irreducible representations of K to dominant irreducible repre-
sentations (Definition 2.4) of the large Cartan subgroup Tfl.

(2) Suppose (µl, Eµl
) is a dominant representation of Tfl. Extend µl to

an algebraic representation of Bcl (on the same space Eµl
) by making

Nc act trivially. Write O(µl) for the corresponding K-equivariant
sheaf on the small flag variety Xsmall(K). Then the space

V (µl) = H0(Xsmall,O(µl))

of global sections is a finite-dimensional representation of K, irre-
ducible if and only if µl is. Evaluation of sections at the base point
of Xsmall(K) defines a natural isomorphism

V (µl)
h ' Eµl

;

This construction therefore inverts the bijection of (1).
(3) Suppose µ ∈ Π∗

dom(Tf ) is a dominant character of Tf . Write O(µ)
for the corresponding K(C)-equivariant sheaf on the large flag variety
Xlarge(K), and define

V (µ) = H0(Xlarge,O(µ)),

a finite-dimensional representation of K. Finally define

µl = Ind
Tfl

Tf
µ,

a representation of dimension equal to the cardinality of Tfl/Tf '
R(K) (Proposition 2.7). Then there is a natural isomorphism

H0(Xlarge,O(µ0)) ' H
0(Xsmall,O(µ));

that is, V (µ) ' V (µl).

Our goal was to relate irreducible representations of K to dominant char-
acters of Tf . What remains is to relate dominant irreducible representations
of Tfl to dominant characters of Tf . We will see that “most” dominant irre-
ducible representations of Tfl are induced from dominant irreducible char-
acters of Tf . Part (3) of the Proposition shows how to construct irreducible
representations of K from such dominant characters of Tf . We will see what
happens in the remaining cases in Theorem 3.10.

3. The R-group of K and irreducible representations of the

large Cartan

In this section we elucidate the structure of R(K), and find a (computable)

parametrization of K̂ in terms of Tfl.
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Definition 3.1. In the setting of Definition 2.1, the Weyl group of Hf in
G is

W (G,Hf ) = NG(Hf )/Hf .

This acts on Hf respecting the real structure and θ; it is a subgroup of the
Weyl group of the root system of Hf in G. Each coset in this Weyl group
has a representative in K. Furthermore any element of K normalizing Tf,0

actually normalizes all of Hf ; this is immediate from the definition of Hf .
The Weyl group of Tf in K is

W (K,Tf ) = NK(Tf )/Tf .

According to the remarks in the preceding paragraph, inclusion defines an
isomorphism

W (K,Tf ) 'W (G,Hf ).

Because Tf is a normal subgroup of Tfl (Definition 2.4), Proposition 2.7
provides a natural inclusion

Tfl/Tf ' R(K) ↪→ W (K,Tf ).

This inclusion depends on our fixed choice of ∆+
c . If necessary to avoid

confusion, we may write the image as R(K)dom or R(K)∆+
c
. A little more

explicitly, it is clear from the definition of Tfl that

R(K)dom = {w ∈W (K,Tf ) | w(∆+
c ) = ∆+

c }.

Finally, since Tf ∩K0 = Tf,0, there is a natural inclusion

W (K0, Tf,0) ↪→ W (K,Tf ).

Proposition 3.2. In the setting of Definition 3.1, there is a semidirect
product decomposition

W (K,Tf ) = R(K)dom nW (K0, Tf,0).

This is an immediate consequence of the fact that W (K0, Tf,0) acts in a
simply transitive way on choices of positive roots for Tf,0 in K.

We turn next to an explicit description of R(K)dom. Define the modular
character 2ρc of Tfl to be the determinant of the adjoint action of Tfl on
the holomorphic tangent space

(3.3a) 2ρc(t) = det (Ad(t) acting on k/bc)

The notation is a little misleading, since there may not be a character ρc

with square equal to 2ρc. But it’s traditional. I’ll use the same notation 2ρc

for the restriction to Tf or to Tf,0. We could avoid this abuse of notation by
writing 2ρcl, 2ρc, and 2ρc,0 for the characters of Tfl, Tf , and Tf,0 respectively.
But the ambiguity will not lead to problems.

[I’m not thrilled with the name “modular character,” which I think has
some other meaning in number theory? A Lie group has a “modular func-
tion” giving the difference between left and right Haar measures; the char-
acter |2ρc| is the modular function of the group Bcl. But we should call it
something other than “stupid ρ shift.”]
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As a character of Tf , we have

(3.3b) 2ρc =
∑

α∈∆+
c

α.

But Tfl may act non-trivially on ∆(K,Tf ), so the summands need not extend
to characters of Tfl.

For the moment the most important property of the modular character
for us is

(3.3c) ∆+
c =

{
α ∈ ∆(K,Tf ) | 〈2ρc, α

∨〉 > 0
}
.

More precisely,

(3.3d) simple roots of Tf in ∆+
c =

{
α ∈ ∆(K,Tf ) | 〈2ρc, α

∨〉 = 2
}
.

Proposition 3.4. In the setting of (3.3), regard 2ρc as an element of t∗f ;
extend it to a θ-fixed element of h∗

f , as is possible uniquely. Define

∆⊥
c = {β ∈ ∆(G,Hf ) | 〈2ρc, β

∨〉 = 0

.

(1) The set of roots ∆⊥
c is a root system. If we fix any positive system

for ∆(G,Hf ) making 2ρc dominant, then ∆⊥
c is spanned by simple

roots. We may therefore define

W⊥
c = W (∆⊥

c ),

a Levi subgroup of W (G,Hf ).

(2) The stabilizer of 2ρc in W (G,Hf ) is equal to W⊥
c .

(3) As a subgroup of W (K,Tf ) (Definition 3.1), R(K)dom is the inter-

section with W⊥
c :

R(K)dom = W (K,Tf ) ∩W⊥
c .

(4) The root system ∆⊥
c is of type Ar

1. That is,

∆⊥
c = {±β1, . . . ,±βr},

with P = {βi} a collection of strongly orthogonal noncompact imag-
inary roots. Consequently W⊥

c ' (Z/2Z)r. Elements of W⊥
c are

in one-to-one correspondence with subsets A ⊂ P : to the subset A
corresponds the Weyl group element

wA =
∏

βi∈A

sβi

(5) The group R(K)dom acts on the collection of weights (Definition 2.3)
of Tf . Each R(K)dom orbit of weights has a unique element µ satis-
fying ∑

βi∈A

〈µ, β∨
i 〉 ≥ 0 (all wA ∈ R(K)dom).
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(6) Suppose µ ∈ Π∗
dom(Tf ). Define

P (µ) = {βi ∈ P | 〈µ, β
∨
i 〉 = 0}

R(K,µ)dom = {wA | wA ∈ R(K)dom, A ⊂ P (µ)}.

Then R(K,µ)dom is the stabilizer of µ in R(K)dom.

Proof. �

The R(K)dom orbit representatives defined in (5) are called P -positive, or
{βi}-positive. Of course the notion depends on the choice of {βi}; that is,
on the choice of one root from each pair ±βi. I don’t see clearly a way to
avoid this choice, but I also don’t see that it should cause any trouble.

Not all of the roots in P contribute to R(K)dom, and occasionally it will
be helpful to single out the ones (called essential) that do. In the notation
of the preceding Proposition, set

(3.5) Pess =
⋃

wA∈R(K)dom

A ⊂ P = {β1, . . . , βr}.

We may write this set as Pess(K) ⊂ P (K) if necessary. Similarly we define
Pess(µ). Clearly the notion of P -positive depends only on Pess, so we may
call it Pess-positive.

Corollary 3.6. In the setting of Definition 3.1, each orbit of W (K,Tf ) on
Π∗(Tf ) has a unique representative which is dominant for ∆+

c (Definition
2.3 and P -positive (Proposition 3.4).

Definition 3.7. Suppose µ ∈ Π∗
dom(Tf ). In terms of the isomorphism

R(K)dom ' Tfl/Tf of Proposition 2.7, define Tfl(µ) to be the inverse image
of R(K,µ)dom (Proposition 3.4). With respect to the natural action of Tfl

on characters of its normal subgroup Tf , we have

Tfl(µ) = {x ∈ Tfl | x · µ = µ}.

We are interested in representations of Tfl(µ) extending the character µ
of Tf . We will show in a moment (Lemma 3.8) that the quotient group
Tfl(µ)/ ker(µ) is abelian, so irreducible representations of this form are one-
dimensional. We can therefore define an extension of µ to be a character

µ̃ ∈ Π∗(Tfl(µ))

with the property that

µ̃|Tf
= µ.

There is a natural simply transitive action of Π∗(R(K,µ)dom) on extensions
of µ, just by tensor product of characters. We call µ̃ an extended dominant
weight.
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Lemma 3.8. The commutator subgroup of Tfl(µ) is contained in the product
of the images of the coroots

β∨ : U(1)→ Tf ,

as β runs over the noncompact imaginary roots in Pess(µ) (Proposition
3.4). Since µ is trivial on all of these coroots, the quotient Tfl(µ)/ ker(µ) is
abelian.

Example 3.9. Suppose G = GL2n with the standard real form (complex
conjugation of matrices) G = GL2n(R). We choose the Cartan involution
θ(g) = tg−1, so that K = O2n is the compact orthogonal group. We may
choose as maximal torus

Tf,0 = [SO2]
n,

embedded as block-diagonal matrices. If we identify R2 with C as usual,
then SO2 ⊂ GL2(R) is identified with U1, the group of multiplications by
complex numbers of absolute value 1. It follows that

ZGL2(R)(SO2) ' C×,

the multiplicative group of nonzero complex numbers; and that

Hf = ZGL2n(R)([SO2]
n) ' [C×]n,

a fundamental Cartan subgroup of G. The maximal compact subgroup of
[C×]n is [U1]

n, so we find

Tf = Tf,0 = [SO2]
n.

Characters of SO2 may be naturally identified with Z, so Π∗(Tf ) = Zn.
If we write e1, . . . , en for the standard basis of Zn, the compact root system

is
∆(K,Tf ) = {±ei ± ej , | 1 ≤ i 6= j ≤ n}.

As positive roots we may choose

∆+
c = {ei ± ej, | 1 ≤ i 6= j ≤ n}.

Adding these characters gives

2ρc = (2n− 2, 2n− 4, . . . , 2, 0) ∈ Zn.

The roots of K are precisely the restrictions to Tf of the complex roots of
Hf . Evidently none of these complex roots is orthogonal to 2ρc. The imagi-
nary roots are {±2ej}, all noncompact. Only the last of these is orthogonal
to 2ρc, so the set P of Proposition 3.4 is 2en.

The compact Weyl group W (K,Tf ) acts on [SO2]
n by permuting the

coordinates and inverting some of them. The Weyl group W (K0, Tf,0) is the
subgroup inverting always an even number of coordinates. Consequently the
large compact Cartan is

Tfl = [SO2]
n−1 ×O2,

and the R group for K is

R(K)dom = {1, s2en}.
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(Other choices of ∆+
c would replace n by some other coordinate m in this

equality.) A weight µ = (µ1, . . . , µn) is dominant if and only if

µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ |µn|.

It is P -positive (remark after Proposition 3.4) if and only if µn ≥ 0.

Here is a classification of irreducible representations of K.

Theorem 3.10. Suppose G is the group of real points of a connected re-
ductive algebraic group, K is a maximal compact subgroup (Definition 1.4),
and Tf is a small Cartan subgroup of K (Definition 2.1). Fix a positive root
system for Tf in K (Definition 2.3, and let R(K)dom be the R-group for K
(acting on the character group Π∗(Tf )). Choose roots {βi} as in Proposi-
tion 3.4. Then the irreducible representations of K are in natural one-to-one
correspondence with R(K)dom orbits of extended dominant weights µ̃ (Defi-
nition 3.7).

Write τ(µ̃) for the irreducible representation of K corresponding to the
extended weight µ̃. Here are some properties of τ(µ̃).

(1) The restriction of τ(µ̃) to K ] (Definition 2.1 is the direct sum of the
irreducible representations of highest weights r ·µ (for r ∈ R(K)dom),
each appearing with multiplicity one. These summands remain irre-
ducible on restriction to K0. If we write µ0 for the restriction of µ
to Tf,0, and τ(µ0) for the irreducible representation of K0 of highest
weight µ0, then

dim τ(µ̃) = (dim τ(µ0))(|R(K)dom/R(K,µ)dom|)

The first factor is given by the Weyl dimension formula, and the
second is a power of two.

(2) The highest weight of τ(µ̃) is

(µ̃)l = Ind
Tfl

Tfl(µ)
µ̃.

This theorem is still not quite amenable to computers: although the set of
P -positive dominant characters µ of Tf can be traversed using the algebraic
character lattice Π∗(Hf ) and its automorphism θ (Proposition 5.3), the
extensions of µ are a bit subtle. We can calculate the group R(K,µ)dom

(Proposition 3.4), whose character group acts in a simply transitive way on
the extensions; but there is no natural base point in the set of extensions,
so it is not clear how to keep track of which is which. We will resolve this
problem in Theorem 10.9 below. For the moment, we will simply reformulate
Theorem 3.10 in a way that does not involve a choice of positive roots for
K.

Definition 3.11. Suppose µ ∈ Π∗(Tf ) is any character. The Weyl group
W (K,Tf ) of Definition 3.1 acts on Π∗(Tf ), so we can define

W (K,Tf )µ = {w ∈W (K,Tf ) | w · µ = µ},
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the stabilizer of µ. Using the isomorphism R(K) ' W (K,Tf )/W (K0, Tf,0)
of Proposition 3.2, this defines a subgroup

R(K,µ) = W (K,Tf )µ/W (K0, Tf,0)
µ ⊂ R(K).

It is not difficult to show that this definition agrees with the one in Proposi-
tion 3.4 when µ is dominant. [The point is to show that the full centralizer
of θ in W (G,Hf ) acts on Π∗(Tf ). This centralizer is the Weyl group of the
system of restricted roots of Tf in G. What needs to be checked is that the
stabilizer of µ in this larger Weyl group action is generated by reflections
in roots orthogonal to µ. The difficulty, if there is any, is with the discon-
nectedness of Tf . Something close to Tf ⊂ Z(G)Tf,0 is probably true, and
would save the day here.]

We need a notion of extended weight here, and the absence of a chosen
positive root system for K complicates matters slightly. Let us write

Nf = normalizer of Tf in K],

Nfl = normalizer of Tf in K.

Then Nf/Tf ' W (K], Tf ) = W (K0, Tf,0), and Nfl/Tf ' W (K,Tf ). The
subgroups corresponding to the stabilizer of µ are

Nf (µ) = {n ∈ Nf | n · µ = µ},

Nfl(µ) = {n ∈ Nfl | n · µ = µ}.

Clearly Nfl(µ)/Tf 'W (K,Tf )µ, and Nf (µ)/Tf 'W (K], Tf )µ.
For each root α of Tf in K there is a three-dimensional root subgroup of

K locally isomorphic to SU(2). The simple reflection sα ∈W (K], Tf ) has a
representative σα in this root subgroup; the representative σα is unique up
to multiplication by the coroot circle subgroup α∨(U1) ⊂ Tf .

A small extension of µ is a character µ̃ of Nfl(µ) subject to the following
two conditions.

(1) The restriction of µ̃ to Tf is equal to µ.

(2) For each compact root α with sα ∈W (K], Tf )µ, we have µ̃(σα) = 1.

The hypothesis sα ∈ (K], Tf )µ is equivalent to

〈µ, α∨〉 = 0;

that is, to µ being trivial on coroot circle subgroup α∨(U1). Since σα is
well-defined up to this subgroup, the requirement in (2) is independent of
the choice of σα.

We will show in a moment (Lemma 3.12) that the quotient of Nfl(µ) by
the kernel of µ and the various σα is actually abelian; so looking for one-
dimensional extensions µ̃ is natural. It will turn out that small extensions of
µ must exist. Once that is known, it follows immediately that Π∗(R(K,µ))
acts in a simply transitive way on the set of small extensions of µ, just by
tensor product of characters.
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The Weyl group W (K,Tf ) acts naturally on extended weights; the stabi-
lizer of µ̃ is equal to W (K,Tf )µ. Write

P e
K(Tf ) = small extensions of characters of Tf .

(This is the first instance of our general scheme of writing P for a set of
parameters for representations.) Elements of P e

K(Tf ) are also called extended
weights.

Lemma 3.12. In the setting of Definition 3.11, choose a positive root sys-
tem (∆+)′(K,Tf ) making µ dominant. Choose a corresponding set P ′ of
noncompact imaginary roots as in Proposition 3.4. Define P ′(µ) ⊂ P ′ as in
Proposition 3.4.

The commutator subgroup of Nf (µ) is contained in the product of the
images of the coroots

γ∨ : U(1)→ Tf ,

as γ runs over the noncompact imaginary roots in P (µ) and the compact
roots orthogonal to µ. Since µ is trivial on all of these coroots, the quotient

Nfl(µ)/〈ker(µ), {σα}〉

is abelian.

Corollary 3.13. Suppose G is the group of real points of a connected reduc-
tive algebraic group, K is a maximal compact subgroup (Definition 1.4), and
Tf is a small Cartan subgroup of K (Definition 2.1). Suppose µ̃ ∈ P e

K(Tf )
is an extended weight for K (Definition 3.11). Then there is a unique irre-
ducible representation τ(µ̃) ∈ Π∗(K), with the following properties.

(1) If µ is dominant (Definition 2.3), then τ(µ̃) is equal to the represen-
tation τ(µ̃|Tfl(µ)) defined in Theorem 3.10.

(2) If w ∈W (K,Tf ), then τ(w · µ̃) = τ(µ̃).

We say that τ(µ̃) has extremal weight µ or µ̃.
Two extended weights µ̃ and γ̃ define the same irreducible representation

of K if and only if γ̃ ∈W (K,Tf ) · µ̃. In this way we get a bijection

Π∗(K)↔ P e
K(Tf )/W (K,Tf ).

According to Corollary 3.6, the two conditions in this Corollary specify
τ(µ̃) completely; one just has to check that the resulting representation of
K is well-defined.

4. Fundamental series, limits, and continuations

The Harish-Chandra parameter for a discrete series representation is per-
haps best thought of as a character of a two-fold cover (the “square root of
ρ cover”) of a compact Cartan subgroup. I am going to avoid discussion of
coverings by shifting the parameter by ρ, the half sum of a set of imaginary
roots.
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Definition 4.1. In the setting of Definition 2.1, a shifted Harish-Chandra
parameter for a fundamental series representation is a pair

Φ = (φ,∆+
im)

(with φ ∈ Π∗(Hf ) a character and ∆+
im ⊂ ∆im(G,Hf ) a system of positive

roots) subject to the following requirement:

(1-std) For every positive imaginary root α ∈ ∆+
im, we have

〈dφ, α∨〉 > 1.

This requirement implies that the positive root system is entirely deter-
mined by the character φ. We keep it in the notation for formal consistency
with notation for coherently continued representations, to be defined in a
moment.

We define

P s
G(Hf ) = {shifted parameters for fundamental series}

= {pairs Φ = (φ,∆+
im) satisfying condition (1-std) above.}

(The superscript s stands for “shifted”; it is a reminder that this parameter
differs by a ρ shift from the Harish-Chandra parameter.)

The positivity requirement (1-std) on Φ looks a little peculiar, because φ
differs by a ρ-shift from the most natural parameter. In terms of the infini-
tesimal character parameter ζ(Φ) defined below, the positivity requirement
is just

〈ζ(Φ), α∨〉 > 0 (α ∈ ∆+
im).

The reason we do not use ζ(Φ) instead of φ is that ζ(Φ) is only in h∗: it
does not remember the values of φ off the identity component of Hf .

The imaginary roots divide into compact and noncompact as usual, ac-
cording to the eigenvalue of θ on the corresponding root space:

∆+
im,c = positive imaginary roots in k,

∆+
im,n = remaining positive imaginary roots.

Define

2ρim =
∑

α∈∆+

im

α, 2ρim,c =
∑

β∈∆+

im,c

β 2ρim,n =
∑

γ∈∆+

im,n

γ.

Each of these characters may be regarded as belonging either to the group
of real characters Π∗(Hf ) or to the algebraic character lattice Π∗(Hf ). The
lattice of characters may be embedded in h∗

f by taking differentials, so we

may also regard these characters as elements of hf (C)∗. There they may
be divided by two, defining ρim, ρim,c, and ρim,n in hf (C)∗. We will be
particularly interested in the weight

ζ(Φ) = dφ− ρim ∈ h∗f ,

called the infinitesimal character parameter for Φ. Notice that it is dominant
and regular for ∆+

im.
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More generally, a shifted Harish-Chandra parameter for a limit of funda-
mental series representations is a pair

Φ = (φ,∆+
im)

(with φ ∈ Π∗(Hf ) a character and ∆+
im ⊂ ∆im(G,Hf ) a system of positive

roots) subject to the following requirement:

(1-lim) For every positive imaginary root α ∈ ∆+
im, we have

〈dφ, α∨〉 ≥ 1.

Again this requirement implies that the positive root system is entirely de-
termined by the character φ. Again we are interested in the infinitesimal
character parameter

ζ(Φ) = dφ− ρim ∈ h∗f ;

now it is dominant but possibly singular for ∆+
im.

Define

P s,lim
G (Hf ) = {shifted parameters for limits of fundamental series}

= {pairs Φ = (φ,∆+
im) satisfying condition (1-lim) above.}

We can write the positivity requirement (1-lim) in the equivalent form

〈ζ(Φ), α∨〉 ≥ 0 (α ∈ ∆+
im).

Finally, a shifted Harish-Chandra parameter for a continued fundamental
series representation is a pair

Φ = (φ,∆+
im)

with φ ∈ Π∗(Hf ), ∆+
im a system of positive imaginary roots, and no positiv-

ity hypothesis on φ. (This is the setting in which the positive root system
needs to be made explicit.) We still use the infinitesimal character parameter

ζ(Φ) = dφ− ρim ∈ h∗f ;

which now need not have any positivity property.
We define

P s,cont
G (Hf ) = {shifted parameters for continued fundamental series}

= {pairs Φ = (φ,∆+
im).}

For each kind of parameter there is a discrete part, which remembers only
the restriction φd of the character φ to the compact torus Tf . We write for
example

P s,lim
G,d (Hf ) = {shifted discrete parameters for limits of fundamental series}

= {pairs Φd = (φd,∆
+
im)}

with φd ∈ Π∗(Tf ) and ∆+
im a system of positive imaginary roots satisfying

condition (1-lim) above.
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A given discrete parameter has a distinguished extension to a full parame-
ter, namely the one which is trivial on Af,0 (the vector subgroup of Hf). By

using this extension, we may regard P s,lim
G,d (Hf ) as a subset of P s,lim

G (Hf ).

Proposition 4.2. In the setting of Definition 4.1, suppose Φ = (φ,∆+
im) ∈

P s
G(Hf ) is a shifted Harish-Chandra parameter for a fundamental series rep-

resentation. Then there is a fundamental series representation I(Φ) for G
attached to Φ. It is always non-zero, and its restriction to K depends only
on the restriction of Φ to Tf . The infinitesimal character of I(Φ) corre-
sponds (in the Harish-Chandra isomorphism) to the weight ζ(Φ) ∈ h∗

f . This

fundamental series representation has a (necessarily irreducible) Langlands
quotient J(Φ). For Φ and Ψ in P s

G(Hf ), we have

I(Φ) ' I(Ψ)⇐⇒ J(Φ) ' J(Ψ)⇐⇒ Ψ ∈W (G,Hf ) · Φ.

Define

µ(Φ) = [φ− 2ρim,c]|Tf
∈ Π∗(Tf ).

Then µ(Φ) is dominant with respect to the compact imaginary roots ∆+
im,c.

The R-group R(K,µ(Φ)) (Definition 3.11) is necessarily trivial, so we may
identify µ(Φ) with an extended weight for K (Definition 3.11). The corre-
sponding representation τ(µ(Φ)) of K (Corollary 3.13) is the unique lowest
K-type of I(φ) and of J(Φ).

We will discuss the construction of I(Φ) in Section 10. For now we observe
only that I(Φ) is a discrete series representation (in the strong sense that the
matrix coefficients are square integrable) if and only if Hf = Tf is compact.
In that case I(Φ) = J(Φ) is irreducible, and its Harish-Chandra parameter
(from his classification of discrete series) is equal to ζ(Φ).

For limits of fundamental series the situation is quite similar; the main
problem is that the corresponding representation of G may vanish. Here is
a statement.

Proposition 4.3. In the setting of Definition 4.1, suppose Φ = (φ,∆+
im) ∈

P s,lim
G (Hf ) is a shifted Harish-Chandra parameter for a limit of fundamental

series. Then there is a limit of fundamental series representation I(Φ) for
G attached to Φ. Its restriction to K depends only on the restriction of
Φ to Tf . The infinitesimal character of I(Φ) corresponds (in the Harish-
Chandra isomorphism) to the weight ζ(Φ) ∈ h∗

f . This fundamental series

representation has a Langlands quotient J(Φ). We have

Ψ ∈W (G,Hf ) · φ =⇒ I(Φ) ' I(Ψ)⇐⇒ J(Φ) ' J(Ψ).

Define

µ(Φ) = [Φ− 2ρim,c]|Tf
∈ Π∗(Tf ).

Then the following three conditions are equivalent:

(1) the weight µ(Φ) is dominant with respect to the compact imaginary
roots ∆+

im,c;
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(2) there is no simple root for ∆+
im which is both compact and orthogonal

to φ− ρim; and
(3) the standard limit representation I(Φ) is non-zero.

Assume now that these equivalent conditions are satisfied. The R-group
R(K,µ(Φ)) (Definition 3.11) is necessarily trivial, so we may identify µ(Φ)
with an extended weight for K (Definition 3.11). The corresponding repre-
sentation τ(Φ) of K (Corollary 3.13) is the unique lowest K-type of I(Φ)
and of J(Φ).

Here is the result for coherent continuation.

Proposition 4.4. In the setting of Definition 4.1, suppose Φ = (φ,∆+
im) ∈

P s,cont
G (Hf ) is a shifted Harish-Chandra parameter for continued fundamen-

tal series. Then there is a virtual representation I(Φ) for G, with the fol-
lowing properties.

(1) The restriction of I(Φ) to K depends only on the restriction of Φ to
Tf .

(2) We have

I(Φ) ' I(w · Φ) (w ∈W (G,Hf )).

(3) The virtual representation I(Φ) has infinitesimal character corre-
sponding to ζ(Φ) ∈ h∗f .

(4) If ζ(Φ) is weakly dominant for ∆+
im, then I(Φ) is equivalent (as a

virtual representation) to the limit of fundamental series attached to
Φ in Proposition 4.3.

(5) Suppose V is a finite-dimensional representation of G. Recall that
∆(V,Hf ) denotes the multiset of weights of Hf on V (Definition
2.2). Then

I(Φ)⊗ V '
∑

δ∈∆(V,Hf )

I(Φ + δ).

Here Φ + δ denotes the continued fundamental series parameter

Φ + δ = (φ+ δ,∆+
im) ∈ P s,cont

G (Hf ).

The result in (4) justifies the ambiguous notation I(Φ); without it, we
would need to specify whether we were regarding Φ as an element of P s,cont

or of P s.
[Since we are ultimately interested in branching laws for standard repre-

sentations, I should include here a formula for I(Φ) restricted to K. That’s
not too hard: you take some Euler characteristic of K/Tf with coefficients
in a bundle that’s some symmetric algebra (corresponding to noncompact
roots) twisted by the line bundle φ and some fixed ρ shift. More or less this
ended up in Proposition 11.11]

One of the central goals of this paper is writing down the bijection be-
tween irreducible representations of K and certain “final standard limit”
representations of G. We’re well on the way to this already; here’s how.
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Definition 4.5. A limit parameter Φ ∈ P s,lim
G (Hf ) (Definition 4.1 is called

final if the corresponding representation I(Φ) is non-zero. According to
Proposition 4.3, this is equivalent to requiring that µ(Φ) be dominant with

respect to ∆+
im,c. We write P s,finlim

G (Hf ) for the set of final limit parameters
for Hf .

Proposition 4.6. The map Φ 7→ τ(Φ) (Proposition 4.3) is an injection
from W (G,Hf ) orbits of discrete final limit parameters for Hf into Π∗(K).
The image consists precisely of those irreducible representations of K for
which any highest weight µ has the following two properties.

(1) The weight µ + 2ρc ∈ Π∗(Tf ) is regular with respect to the system
of restricted roots of Tf in G. Because of this property, we can
define ∆+(G,Tf )(µ) to be the unique positive system making µ+2ρc

dominant.
(2) The weight µ+2ρc−ρ(µ) ∈ t∗f is weakly dominant for ∆+(G,Tf )(µ).

There is a similar statement just for fundamental series; the only change is
that one imposes the stronger condition that µ+2ρc−ρ is strictly dominant
for ∆+(G,Tf ). [On sober reflection I’m concerned about dominance for
imaginary roots versus dominance for all roots. At least one has to require
strict dominance of µ+ 2ρc − ρ(µ) only for the imaginary roots?]

5. Characters of compact tori

Suppose H is a θ-stable maximal torus in G that is defined over R. The
compact factor of H is

(5.1a) T = Hθ,

the (algebraic) group of fixed points of θ on H. Clearly this is an abelian
algebraic group defined over R. Its group of real points is

(5.1b) T = Hθ = H ∩K,

the maximal compact subgroup of the real Cartan subgroup H. Write

(5.1c) Te = (Hθ)e, Te = Te(R);

this last group is a connected compact torus, equal to the identity component
T0.

So far all of this fits well with standard notation for real groups. Now we
begin to deviate a little. The split component of H is

(5.1d) A = H−θ,

the (algebraic) group of fixed points of −θ on H. Again this is an abelian
algebraic group defined over R. Its group of real points is

(5.1e) A = H−θ.

We have containments

(5.1f) A0 ⊂ Ae ⊂ A,
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usually both proper. The complex torus Ae is the maximal R-split torus in
H, so Ae is a product of copies of R×. Consequently A0 is a vector group,
isomorphic to its Lie algebra by the exponential map. There is a direct
product of Lie groups (the Cartan decomposition)

(5.1g) H = T ×A0,

but we will avoid this (first of all on the aesthetic grounds that it is not
algebraic). Again in real groups one typically writes A for our A0; this we
will avoid even more assiduously.

[Note to the gang: the standard notation is a royal pain. It’s all very well
to write H = TA when you are speaking about just one Cartan, but as soon
as there are several you ought to be able to indicate the dependence of T on
H more explicitly. One approach is to call different Cartans H1,H2, . . . and
then to have T1, T2, . . ., but that is not so satisfactory. We might forget about
T altogether, and write Hθ, but I don’t like that much either. Suggestions
are welcome (although I promise to ridicule most of those as well.]

The next goal is to describe the set of characters of T :

(5.2) Π∗
adm(T ) = continuous characters ξ : T → U1

Proposition 5.3. (1) In the setting of (5.1), restriction to T defines a
natural identification

Π∗
adm(T ) ' Π∗

alg(H)/(1 − θ)Π∗
alg(H)

given by restriction of characters of H to T .
(2) The identity component Te is equal to the image of the homomor-

phism

δ(θ) : H→ H, δ(θ)(h) = h · θ(h).

(3) If ξ ∈ Π∗
alg(H), then

ξ ◦ δ(θ) = ξ + θ(ξ).

Consequently ξ is trivial on the image of δ(θ) if and only if ξ+θξ = 0;
that is, if and only if ξ belongs to the −1 eigenspace Π∗

alg(H)−θ of θ
on the character lattice.

(4) Restriction to T0 defines a natural identification

Π∗
adm(T0) ' Π∗

alg(H)/Π∗
alg(H)−θ.

The δ in (3) is meant to stand for “double.”
[I’d be pleased to see a proof of (1) that’s as simple and convincing as the

proof of (4) implicit in the formulation of this result.]
The main point of Proposition 5.3 is the identification of characters of

T with cosets in the lattice of characters of H, a lattice to which the atlas
software has access.

[There are a couple of obvious issues (and undoubtedly many more that
are obvious to Fokko). The first is computing when two elements of Π∗

alg(H)

belong to the same coset of (1−θ)Π∗
alg(H). This I presume is close to things
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that Fokko has already implemented for listing possible x and y. The second
is that Π∗(T ) is infinite, so can’t be kept in fast memory. In each problem
there will be a question of deciding what finite set of characters of T one
should look at, and then enumerating that set efficiently. I’ll try to return to

this question after writing down the connections between K̂ and the various
Π∗(T ). Roughly speaking, I think that we’re going to be interested in some
rational infinitesimal character

λ ∈ Π∗(H)⊗Z Q.

Then I suspect that we’ll often be concerned with cosets represented by the
(finite) set of ξ ∈ Π∗(H) belonging to the convex hull of the Weyl group orbit
of λ. This convex hull is described by integer inequalities on the coordinates
of ξ, that are easy to write down. (The bad news is that the number of these
inequalities is of the order of |W |.) Some thought is going to be required to
enumerate our interesting cosets efficiently.]

6. Split tori and representations of K

In Section 4 we wrote down the lowest K-type correspondence between
fundamental series and certain representations of K. In this section we look
at the opposite extreme case: lowest K-types of principal series representa-
tions. The general case is going to be built from these two extremes in a
fairly simple way.

In this section we therefore assume that G is quasisplit, and that Hs is
a θ-stable maximally split Cartan subgroup of G. What these assumptions
mean is that there are no imaginary roots of Hs in G. Define

(6.1a) Ts = Hθ
s = Hs ∩K, As = H−θ

s

as in (5.1), the compact and split parts of Hs. Again, the quasisplit hy-
pothesis means that every root has a non-trivial restriction to As, and even
to the real identity component As,0. These restrictions form a (possibly
non-reduced) root system

(6.1b) ∆(G,As) = {α|as | α ∈ ∆(G,Hs).

The Weyl group of this root system is isomorphic to W (G,Hs) and to
W (G,Hs)

θ:

(6.1c) W (G,Hs)
θ 'W (G,Hs) 'W (G,As);

the isomorphisms are given by restriction of the action from H to Hs to
As,0.

There is some possible subtlety or confusion here arising from the discon-
nectedness of As. We have written ∆(G,As) instead of ∆(G,As,0) simply
because the former is shorter; but it is not entirely clear what should be
meant by a root system inside the character group of a disconnected reduc-
tive abelian group like As. One reassuring fact is that if α1 and α2 are roots
in ∆(G,Hs) having the same restriction to as, then they also have the same
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restriction to As. (The reason is that the hypothesis implies that either
α1 = α2, or α1 = −θα2.) This means that there can be no confusion about
the set ∆(G,As): it is the set of orbits of {1, θ} on ∆(G,Hs).

Definition 6.2. In the setting of (6.1), a (shifted) parameter for a principal
series representation is a pair

Φ = (φ, ∅)

with φ ∈ Π∗(Hs) a character and ∅ a set of positive roots for the (empty
set of) imaginary roots of Hs in G. We retain the word “shifted” and the
ordered pair structure for formal consistency with Definition 4.1 even though
the shift (by imaginary roots) is now zero. In the same way, we may also call
these same pairs shifted parameters for limits of principal series or shifted
parameters for continued principal series even though the distinction among
these concepts (which depends on imaginary roots) is empty. We define

P s
G(Hs) = P s,lim

G (Hs) = P s,cont
G (Hs) = Π∗(Hs)× {∅},

the set of shifted parameters for principal series representations. We will
need the weight

ζ(Φ) = dφ− ρim = dφ ∈ h∗s,

called the infinitesimal character parameter for Φ. We may occasionally
write ζg(Φ) for clarity.

The (shifted) discrete parameters for principal series representations are
the restrictions to Ts of parameters for principal series:

P s
G,d(Hs) = Π∗(Ts)× {∅}.

As in the case of fundamental series, each discrete parameter has a dis-
tinguished extension to a full parameter (the one that is trivial on As,0),
allowing us to regard

P s
G,d(Hs) ⊂ P

s
G(Hs).

Proposition 6.3. In the setting of Definition 6.2, suppose Φ = (φ, ∅) ∈
P s

G(Hs) is a (shifted) Harish-Chandra parameter for a principal series rep-
resentation. Choose a system of positive roots ∆+(G,As) making the real
part of dφ|as weakly dominant, and let Bs ⊃ Hs be the corresponding Borel
subgroup of G. Put

I(Φ) = IndG
Bs

Φ

(normalized induction). Then I(Φ) is a principal series representation of G
attached to Φ; its equivalence class is independent of the choice of ∆+(G,As).
It is always non-zero, and its restriction to K is

I(Φ)|K = IndK
Ts
φ|Ts

(which depends only on the restriction of Φ to Ts). The infinitesimal char-
acter of I(Φ) corresponds to the weight ζ(Φ) ∈ h∗

s. This principal series
representation has a (possibly reducible) Langlands quotient J(Φ). We have

I(Φ) ' I(Ψ)⇐⇒ J(Φ) ' J(Ψ)⇐⇒ Ψ ∈W (G,Hs) · Φ.
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Now regard Φ as a shifted parameter for continued principal series, and
suppose V is a finite-dimensional representation of G. Recall the multiset
∆(V,Hs) of weights of Hs on V (Definition 2.2). Then

I(Φ)⊗ V '
∑

δ∈∆(V,Hs)

I(Φ + δ)

as virtual representations.

In the coherent continuation formula mentioned last, both sides are actual
representations of G. Nevertheless, the equality may be true only as virtual
representations: composition factors may be arranged differently on the two
sides. The simplest example has I(Φ) the nonspherical unitary principal
series for SL2(R) (with J(Φ) = I(Φ) the sum of two limits of discrete se-
ries), and V the two-dimensional representation. The trivial representation
appears twice as a quotient on the right side of the formula, but not at all
as a quotient on the left. Part of the difficulty is that the Borel subgroup
Bs is dominant only for one of the two parameters Φ + δ (with δ a weight
of V ).

In this proposition, in contrast to Definition 2.3, the positive roots are
really those in Bs (and not their negatives).

To understand the K-types of the principal series I(Φ), we need to under-
stand which representations of K can contain the character φ|Ts of Ts. Since
we understand representations of K in terms of their highest weights, this
amounts to understanding the relationship between Ts and the Cartan sub-
group Tf of K. In order to discuss this, we need the Knapp-Stein R-group
for principal series.

Definition 6.4. In the setting of Definition 6.2, fix a parameter Φ = (φ, ∅) ∈
P s

G(Hs). Define

W (G,Hs)
Φ = {w ∈W (G,Hs) | w · Φ = Φ},

the stabilizer of Φ (that is, of the character φ) in the real Weyl group. The
set of good roots for As in G is

∆Φ(G,As) = {α ∈ ∆(G,As) | φ is trivial on α∨}.

Since α is just the restriction of a root, the meaning of the condition “φ
is trivial on α∨” requires some explanation. First, we can construct (not
uniquely) a homomorphism from SL2(R) into G using Hs and the root
α. (In the special case of a real root, this homomorphism is described a
little more precisely in (6.6a) below.) Restricting this homomorphism to
the diagonal torus R× of SL2(R) gives a homomorphism

α∨ : R× → As

which is uniquely determined; and the first requirement we want to impose
is that φ ◦ α∨ is trivial. When α is not the restriction of a real root, then
the simple real rank one subgroup of G corresponding to α is covered by
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SU(2, 1) or SL2(C). In each of these real groups the maximally split Cartan
is C×, so the real coroot α∨ extends to

α∨
C : C× → Hs.

(The extension is well-defined up to composition with complex conjugation.)
In these cases (to call α good) we impose the requirement that φ ◦ α∨

C
is

trivial.
The good roots form a subroot system of the restricted roots, and the

corresponding Weyl group

W0(G,Hs)
Φ = W (∆Φ(G,As))

is a normal subgroup of W (G,Hs)
Φ. The R-group of Φ is by definition the

quotient

R(Φ) = W (G,Hs)
Φ/W0(G,Hs)

Φ.

Proposition 6.5. Suppose we are in the setting of Definition 6.4.

(1) The irreducible constituents of the Langlands quotient representation
J(Φ) all occur with multiplicity one. There is a natural simply tran-
sitive action of the character group Π∗(R(Φ)) on these constituents.

(2) Write Φd for the discrete part of Φ (the restriction of φ to Ts, ex-
tended to be trivial on As,0). Then there is a natural inclusion
W (G,Hs)

Φ ↪→ W (G,Hs)
Φd , which induces an inclusion R(Φ) ↪→

R(Φd).
(3) Each irreducible summand of I(Φd) = J(Φd) contains a unique low-

est K-type of I(Φd). There is a natural simply transitive action of
Π∗(R(Φd)) on this set A(Φd) of K-types.

(4) The sets A(Φd) partition a certain subset of Π∗(K). We have

A(Φd) = A(Ψd)⇐⇒ Ψd ∈W (G,Hs) · Φd.

In order to understand the lowest K-types of these principal series repre-
sentations, we must therefore describe A(Φd) as a set of (extended) highest
weights. The first step is to relate Tf (where extended highest weights are
supposed to live) to Ts (where Φd lives). So choose a set

(6.6a) β1, . . . , βr

of strongly orthogonal real roots of Ts inG, of maximal cardinality. Attached
to each real root α we can find an algebraic group homomorphism defined
over R

(6.6b) ψα : SL2 → G,

in such a way that

(1) ψα carries the diagonal Cartan subgroup of SL2 into Hs, and the
upper triangular subgroup into the α root subgroup; and

(2) ψα(tg−1) = θ(ψα(g)).
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Such a homomorphism ψα is unique up to conjugation in SL2 by

(6.6c)

(
i 0
0 −i

)

In particular, the element

(6.6d) mα = ψα

(
−1 0
0 −1

)
= α∨(−1) ∈ Ts

is well-defined.
Since the roots {βi} are strongly orthogonal and real, the groups ψβi

(SL2)
commute with each other and with Ts,0.

[Idea: Tf,0 is generated by Ts,0 and various ψβi
(SO2). Use this to compute

Tf etc.]

Definition 6.7. A shifted (limit) parameter Φ = (φ, ∅) ∈ P s
G(Hs) (Defini-

tion 4.1) is called final if for every real root α of Hs in G,

either 〈dφ, α∨〉 6= 0 or φ(mα) = 1.

(If Φ is discrete, the requirement is that φ(mα) = 1 for every real root α.)

We write P s,finlim
G (Hf ) for the set of final limit parameters for Hf .

For the remainder of this section we consider the important special case

(6.8a) G split, Φ ∈ P s,finlim
G,d discrete final limit parameter.

This is the same thing as a character

(6.8b) φ ∈ Π∗(Ts), φ(mα) = 1 (all α ∈ ∆(G,Hs)).

Here mα is the element of order 2 defined in (6.6d).

Proposition 6.9. In the setting (6.8), the principal series representation
I(Φ) has a unique lowest K-type τ(Φ). This representation of K is trivial on
the identity component of Gder ∩K, with Gder the derived group of G. The
map Φ 7→ τ(Φ) is an injection from discrete final limit parameters for Hf

into Π∗(K). (The group W (G,Hs) acts trivially on discrete final limit pa-
rameters for Hs, so we could also say “W (G,Hs) orbits of discrete final limit
parameters. . . ”) The image consists precisely of those irreducible represen-
tations of K which are trivial on (Gder ∩K)0. These are the representations
of K for which any highest weight µ has the property that 〈µ, β∨〉 = 0 for
any root β ∈ ∆(G,Tf ).

[Algorithmically, still need to describe how to pass from the highest weight
description of such representations of K to a character of Ts. What’s needed
is a computer-friendly description of extended highest weights for K. We
have a computer-friendly description of discrete final limit parameters for
Hs: this is (algebraic characters of Hs even on every coroot)/(image of
1− θ).]
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7. Parametrizing extended weights

We have a computer-friendly parametrization of characters of Tf available
from Proposition 5.3:

(7.1) Π∗(Tf ) = Π∗
alg(Hf )/(1− θf )Π∗

alg(Hf ).

Here I have written θf for the action of θ on the fundamental Cartan Hf ;
this is in some sense a compromise with the software point of view, in which
the Cartan is always fixed and only the Cartan involution is changing. In
order to parametrize representations of K, we need not just a character µ
of Tf , but an extension µ̃ of that character to a slightly larger group. We
therefore need a computer-friendly parametrization of such extensions, and
this section seeks to provide such a parametrization.

We begin with the special case of Proposition 6.9: assume first of all that

(7.2a) G is split, with θ-stable split Cartan Hs.

[Actually it should be fairly easy to do what follows for the maximally split
Cartan in any G; but I’ll need it only for split G.] This means that

(7.2b) θs(α) = −α (α ∈ ∆(G,Hs)).

On the fundamental Cartan, it is equivalent to assume that there is an
orthogonal set of imaginary roots

(7.2c) {γ1, . . . , γm} ⊂ ∆im,n(G,Hf )

spanning the root system ∆(G,Tf ), and for which the successive Cayley
transforms are defined: γi is noncompact if and only if it is preceded by an
even number of γj to which it is not strongly orthogonal. The successive
Cayley transforms identify Π∗

alg(Hs) with Π∗
alg(Hf ) in such a way that

(7.2d) θf =
m∏

j=1

sγj
◦ θs.

In particular, θf acts on the roots by minus the product of the reflections
in the γj . We also want to impose a condition on the weights of Tf that we
consider: we look only at

(7.2e) {µ ∈ Π∗(Tf ) | 〈µ, α∨〉 = 0 (α ∈ ∆(G,Tf )}.

This restriction is equivalent (since the γ∨j span tf modulo the center of g)
to

(7.2f) {µ ∈ Π∗(Tf ) | 〈µ, γ∨j 〉 = 0 (j = 1, . . . ,m)}.

We call these weights “G-spherical,” and write the set of them as

(7.2g) PK,G−sph(Tf ).

The corresponding set of extended weights (Definition 3.11) is written

(7.2h) P e
K,G−sph(Tf ).

Here is an explanation of the terminology.
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Lemma 7.3. Suppose G is split, and (τ, E) is an irreducible representation
of K having extremal weight µ ∈ Π∗(Tf ) (Corollary 3.13). Recall from (1.5)
the decomposition g = k+s of the Lie algebra into the +1 and −1 eigenspaces
of θ. Then E can be extended to a (g,K)-module on which s acts by zero
if and only if µ is G-spherical. That is, µ is G-spherical if and only if any
irreducible representation of K of extremal weight µ is trivial on the ideal
[s, s] ⊂ k.

Recall from Proposition 6.9 the discrete final limit parameters for Hs:

(7.4) P s,finlim
G,d (Hs) = {Φ ∈ Π∗(Ts) | φ(mα) = 1 (α ∈ ∆(G,Hs))}.

The element mα ∈ Ts was defined in (6.6d).

Proposition 7.5. Suppose G is split. The following sets of representations
of K (called G-spherical) are all the same.

(1) Representations having a G-spherical extremal weight (cf. (7.2)).
(2) Representations trivial on [s, s] ⊂ k (cf. Lemma 7.3).
(3) Lowest K-types of principal series with discrete final limit parameters

(Proposition 6.9).

This establishes a bijection Φ 7→ τ(Φ) from discrete final limit parame-
ters for Hs to G-spherical representations of K. Taking into account the
parametrization of Π∗(K) by extended highest weights gives bijections

P e
K,G−sph(Tf ) ←→ Π∗

G−sph(K) ←→ P s,finlim
G,d (Hs),

µ̃(Φ) ←→ τ(Φ) ←→ Φ

Proposition 5.3 provides a computer-friendly parametrization of the dis-
crete final limit parameters of Hs:

P s,finlim
G,d (Hs) = {λ ∈ Π∗

alg(Hs) | 〈λ, α
∨〉 ∈ 2Z (α ∈ ∆(G,Hs)}

/(1− θs)Π
∗
alg(Hs).

(7.6)

The condition on λ in the numerator arises from the fact that λ(mα) =

(−1)〈λ,α∨〉. The description of characters of Tf in (7.1) immediately special-
izes to a description of the G-spherical characters:

PK,G−sph(Tf ) = {λ0 ∈ Π∗
alg(Hf ) | 〈λ0, γ

∨
j 〉 = 0 (j = 1, . . . ,m)}

/(1− θf )Π∗
alg(Hf ).

(7.7)

An equivalent description of the numerator is

PK,G−sph(Tf ) = {λ0 ∈ Π∗
alg(Hf ) | 〈λ0, α

∨ + θα∨〉 = 0 (α ∈ ∆(G,Hf ))}

/(1 − θf )Π∗
alg(Hf ).

(7.8)

What we are going to do is describe a natural surjective map

(7.9a) P s,finlim
G,d (Hs) � PK,G−sph(Tf )
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Since the first set is identified by Proposition 7.5 with G-spherical extended
weights, this amounts to

(7.9b) P e
K,G−sph(Hs) � PK,G−sph(Tf )

This will be precisely the map µ̃ 7→ µ restricting an extended weight to Tf .
In order to describe the map, it is helpful to introduce some auxiliary

lattices attached to a maximal torus H ⊂ G. To every λ ∈ Π∗
alg(H) one can

attach a Z/2Z-grading of the coroot system, by

(7.10) ε(λ) : ∆∨ → {0, 1}, ε(λ)(α∨) = 〈λ, α∨〉 (mod 2).

The map of (7.9) is closely related to these gradings. In terms of the grad-
ings, we define

Π∗
ev(H) = {λ ∈ Π∗

alg(H) | ε(λ) = 0}

R(H) = Z∆(G,H) = root lattice

Rev(H) = {φ ∈ R(H) | ε(φ) = 0}

Π∗
R(H) = {λ ∈ Π∗

alg(H) | ∃φ ∈ R with ε(λ) = ε(φ)}

= ε−1(ε(R)).

(7.11)

We can immediately use these definitions to rewrite (7.6) (which we know
is parametrizing G-spherical representations of K) as

(7.12) P s,finlim
G,d (Hs) = Π∗

ev(Hs)/(1 − θs)Π
∗
alg(Hs).

To analyze (7.7) in a parallel way, we begin with a lemma.

Lemma 7.13. Suppose {γ1, . . . , γm} is a maximal orthogonal set of roots
in ∆(G,H). Suppose ε is a grading of the coroots with values in Z/2Z, and
that

ε(γ∨j ) = 0, (j = 1, . . . ,m).

Then there is a subset A ⊂ {γ1, . . . , γm} so that ε is equal to the grading εA
defined by the sum of the roots in this subset:

ε(α∨) ≡
∑

γ∈A

〈γ, α∨〉 (mod 2)

I am grateful to Jeff Adams and Becky Herb for providing a (fairly con-
structive) proof of this lemma, which appears in the next section.

Lemma 7.14. In the setting of (7.2), consider PK,G−sph(Tf ) as described by
(7.7). According to Lemma 7.13, any element λ0 ∈ Π∗

alg(Hf ) representing an

element of P ∗
K,G−sph (that is, orthogonal to all γj) must belong to Π∗

R(Hf ).
This defines a map

PK,G−sph(Tf )→ Π∗
R(Hf )/[(1 − θf )Π∗(Hf ) +R].

This map is an isomorphism.
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Proof. We first prove surjectivity. Suppose λ ∈ Π∗
R(Hf ); we need to show

that the class of λ is in the image of our map. Since the denominator includes
the root lattice R, we may replace λ by some λ1 = λ + ψ with ψ ∈ R and
λ1 ∈ Π∗

ev(Hf ). Since λ1 takes even values on all coroots, we can define

λ0 = λ1 −
m∑

j=1

(〈λ1, γ
∨
j 〉/2)γj

(again modifying λ1 by an element of R). Clearly λ0 is orthogonal to all the
γj, so it represents a class in PK,G−sph(Tf ) mapping to the class of λ.

Next we prove injectivity. Suppose λ0 represents a class in PK,G−sph(Tf )
mapping to zero; that is, that

(7.15a) λ0 = ξ − θf (ξ) + ψ,

with ψ ∈ R.
The term ξ − θf (ξ) is orthogonal to all imaginary roots, including the

γj, so 〈ψ, γ∨j 〉 = 0 for all j. By (7.2d), this is equivalent to θf (ψ) = −ψ.
Choose a θ-stable system of positive roots. List the simple imaginary roots as
α1, . . . , αr, and the simple complex roots as β1, θfβ1, . . . , βs, θfβs. Because
these r + 2s roots are a basis for the root lattice R, it is clear that the −1
eigenspace of θf on R has as basis the s elements βi − θfβi. In particular,
ψ is a sum of these elements, so

(7.15b) ψ ∈ (1− θf )R ⊂ (1− θf )Π∗(Hf ).

Now (7.15) shows that λ0 represents 0 in PK,G−sph(Tf ), proving injectivity.
�

Proposition 7.16. Suppose that we use a Cayley transform to identify
Π∗

alg(Hf ) with Π∗
alg(Hs). This identification is unique up to the action of

W (G,Hs). This identification sends PK,G−sph(Tf ) (as described in Lemma
7.14) to

Π∗
R(Hs)/[(1 − θs)Π

∗(Hs) +R].

The Weyl group W (G,Hs) acts trivially on this quotient, so the identification
with PK,G−sph(Tf ) is well-defined. This quotient in turn may be identified
(by the natural inclusion) with

Π∗
ev(Hs)/[(1 − θs)Π

∗(Hs) +Rev].

In this way PK,G−sph(Tf ) is naturally identified as a quotient of

Π∗
ev(Hs)/(1 − θs)Π

∗(Hs) ' P
s,finlim
G,d (Hs).

Taking into account the identification of Proposition 7.5, we have given a
surjective map

P e
K,G−sph(Tf )→ PK,G−sph(Tf )

from extended (extremal) weights of G-spherical representations of K, to
(extremal) weights. This map is just restriction to Tf .
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Proof. The action of Weyl group elements on algebraic characters is by addi-
tion of elements of the root lattice R. Since we are dividing by R in the first
formula, this shows that the Weyl group action is trivial on the quotient,
as claimed. Since θs and θf differ by the product of reflections in the γj, it
also follows that

(1− θs)Π
∗(Hs) +R = (1− θf )Π∗(Hf ) +R

(using the Cayley transform identifications). This provides the first formula
of the proposition. The map from the second formula to the first comes from
the inclusion of Π∗

ev in Π∗
R. Surjectivity is immediate from the definitions,

and injectivity is straightforward.
For the last claim, recall that Tf ⊂ G

] = G0 ·Z(G); and furthermore G0 ⊂
Gder,0 · Z(G). It follows that any G-spherical character of Tf is determined
by its restriction to Z(G)∩K. So we only need to verify that the mappings
described in the proposition do not change central character. Since at every
stage we are simply adding and subtracting roots, or changing Cartans by
an inner automorphism of G, this is clear. �

It is now more or less a routine matter to parametrize extensions of a
general weight µ ∈ Π∗(Tf ). To do this, we first choose positive roots

(7.17a) ∆+
c ⊂ ∆(K,Tf )

in such a way that µ is dominant. This defines 2ρc as in (3.3), the sum of
the positive compact roots, and the large Cartan Tfl ⊃ Tf of Definition 2.4.
Define Tfl(µ) as in Definition 3.7, the stabilizer of µ in Tfl. We now choose
a Levi subgroup L ⊃ Hf large enough so that

(7.17b) Tfl(µ) ⊂ L,

(so that we can compute extensions of µ inside L), but small enough that µ
is L-spherical:

(7.17c) 〈µ, γ∨〉 = 0, (γ ∈ ∆(L, Tf )).

[Actually what we want is a one-dimensional representation ξ of L∩K that
will translate K questions to L ∩K questions, and we want µL = µ+ ξ to
be L-spherical. Then we know how to write an extended highest weight µ̃L

for µL; the extended highest weight for µ on K is µ̃L − ξ.]
Finally, we require that

(7.17d) L is split, with split Cartan subgroup H

(so that we can apply Proposition 7.16).
Here is one way to find such an L. Define

(7.17e) R(K,µ) = Tfl(µ)/Tf ⊂W (G,Hf )

(Proposition 3.4). Recall from Proposition 3.4 the set of strongly orthogonal
noncompact imaginary roots

(7.17f) P (µ) = {β1, . . . , βs}
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with the property that

(7.17g) P (µ) ∪ −P (µ) = {β ∈ ∆(G,Tf ) | 〈µ, β∨〉 = 〈2ρc, β
∨〉 = 0}.

(We have changed notation a little from Proposition 3.4, by renumbering
the roots βi.) These are the roots of a split Levi subgroup Lsmall(µ) ⊃ Hf ,
locally isomorphic to a product of s copies of SL2(R) and an abelian group.
Obviously µ is Lsmall-spherical, and Proposition 3.4 shows that Tfl(µ) ⊂
Lsmall. (We could even have accomplished this using the slightly smaller set
Pess(µ) described in (3.5).) I’ll describe another (larger) natural choice for
L in Section 12.

8. Proof of Lemma 7.13

I repeat that the following argument is due to Adams and Herb. The
notation will be a little less burdensome if we interchange roots and coroots,
proving instead

Lemma 8.1. Suppose S = {γ1, . . . , γm} is a maximal orthogonal set of roots
in ∆(G,H). Suppose ε is a grading of the roots with values in Z/2Z, and
that

ε(γj) = 0, (j = 1, . . . ,m).

Then there is a subset A ⊂ S so that ε is equal to the grading εA defined by
the sum of the coroots in this subset:

ε(α) ≡
∑

γ∈A

〈α, γ∨〉 (mod 2)

Proof. We proceed by induction on m. If m = 0 then ∆ is empty and the
lemma is trivial. So suppose m > 0. Define

(8.2a) ∆m−1 = {β ∈ ∆ | 〈β, γ∨m〉 = 0}, Sm−1 = {γ1, . . . , γm−1}.

the roots orthogonal to γm. Clearly Sm−1 is a maximal orthogonal set
of roots in ∆m−1, and by hypothesis ε is trivial on Sm−1. By inductive
hypothesis there is a subset Am−1 ⊂ Sm−1 so that

(8.2b) ε(α) ≡
∑

γ∈Am−1

〈α, γ∨〉 (mod 2) (α ∈ ∆m−1).

Define

(8.2c) A′ = Am−1 ⊂ S, A′′ = Am−1 ∪ {γm}.

It follow immediately from (8.2a) that

(8.2d) the gradings εA′ and εA′′ agree with ε on ∆m−1 and ±γm.

We are going to show that taking A equal to one of the two subsets A′ and
A′′ satisfies the requirement of Lemma 8.1 that εA = ε. To do that we need
a lemma.

Lemma 8.3. In the setting of (8.2), there are two mutually exclusive pos-
sibilities.
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(1) The coroot γ∨m takes even values on every root:

〈α, γ∨m〉 ∈ 2Z, (α ∈ ∆).

In this case the integer span of γm and ∆m−1 contains ∆.
(2) There is a root α1 ∈ ∆ so that 〈α, γ∨m〉 is odd. In this case the integer

span of γm, ∆m−1, and α1 contains ∆.

In case (1), both of the gradings εA′ and εA′′ are equal to ε. In case (2),
exactly one of them is equal to ε.

The last statement of this lemma completes the proof of Lemma 8.1 �

Proof of Lemma 8.3. Since ∆ is reduced, the possible values for 〈α, γ∨
m〉 are

0, ±1, ±2, and ±3. Obviously the pairings of roots with γ∨m are either all
even or not all even. Consider the first possibility. If α is any root, then
〈α, γ∨m〉 is equal to 0, 2, or −2. In the first case, α belongs to ∆m−1. In the
second, either α = γm or α − γm is a root in ∆m−1; so in either case α is
in the integer span of ∆m−1 and γm. In the third case, either α = −γm or
α+ γm is a root in ∆m−1, and we get the same conclusion.

Consider now the second possibility, and fix α1 having an odd pairing with
the coroot γ∨m. Possibly after replacing α1 by ±α1 ± γm, we may assume
that

(8.4a) 〈α1, γ
∨
m〉 = 1.

Suppose β ∈ ∆; we want to write

(8.4b) β = pγm + qα1 + δ (p, q ∈ Z, δ ∈ ∆m−1).

If 〈β, γ∨m〉 is even, then we can achieve (8.4b) as in the first possibility (not
using α1). So we may assume that 〈β, γ∨m〉 is odd. Perhaps after replacing
β by −β, we may assume that 〈β, γ∨m〉 is 1 or 3. Perhaps after replacing β
by β − γm, we may assume that

(8.4c) 〈β, γ∨m〉 = 1.

If 〈β, α∨
1 〉 > 0, then δ = β−α1 is a root in ∆m−1, and (8.4b) follows. So we

may assume

(8.4d) 〈β, α∨
1 〉 ≤ 0.

Now it follows from (8.4c) that β − γm is a root taking the value −1 on the
coroot γ∨m. Furthermore

〈β − γm, α
∨
1 〉 = 〈β, α∨

1 〉 − 〈γm, α
∨
1 〉.

The first term is non-positive by (8.4d) and the second strictly negative by
(8.4a). It follows that δ = β − γm + α1 is a root or zero. In the first case
δ ∈ ∆m−1 (by (8.4a) and (8.4c)), so in any case β = γm − α1 + δ has the
form required in (8.4b).

The last assertion of the lemma follows from (8.2d) in the first case. In
the second case, the hypothesis on α1 shows that εA′(α1) = 1− εA′′(α1). So



36 DAVID A. VOGAN, JR.

exactly one of these two gradings agrees with ε on α1, and the assertion now
follows from (8.2d). �

9. Highest weights for K and θ-stable parabolic subalgebras

The description of Π∗(K) in terms of Π∗(Tf ) in Theorem 3.10 was medi-
ated by the (θ-stable) Borel subalgebra bc of k. In this section we consider
more general correspondences of the same sort, between representations of
K and those of certain Levi subgroups L ∩K. These correspondences will
be used in Section 10 to describe the lowest K-types of standard limit rep-
resentations.

We therefore fix a θ-stable parabolic subalgebra

(9.1a) q ⊃ u

of g; here u denotes the nil radical of q. Recall that σ is the antiholomorphic
involution of g defining the real form. We assume also that q is opposite to
q; equivalently,

(9.1b) q ∩ σq = l

is a Levi subalgebra of q. Clearly σl = l, so l is defined over R. It is also
preserved by the Cartan involution θ. We write L for the corresponding real
Levi subgroup of G. It is not difficult to show that

(9.1c) L = {g ∈ G | Ad(g)(q) = q}.

Like G, L is the group of real points of a connected reductive algebraic
group, and θ|L is a Cartan involution for L; so L∩K is a maximal compact
subgroup of L. Choose a θ-stable fundamental Cartan subgroup Hf for L
as in Definition 2.1. The use of the same notation as for G is justified by
the following result.

Proposition 9.2. In the setting of (9.1), the fundamental Cartan Hf for
L is also a fundamental Cartan subgroup for G.

Now let us fix a choice of positive roots

(9.3a) ∆+
c (L) ⊂ ∆(L ∩K,Tf ).

Define a maximal nilpotent subalgebra of l ∩ k by the requirement

(9.3b) ∆(nc(l), Tf ) = −∆+
c (L)

as in Definition 2.3, so that

(9.3c) bc(l) = tf + nc(l)

is a Borel subalgebra of l∩ k. We now get a Borel subalgebra of k by defining

(9.3d) bc = bc(l) + u ∩ k, nc = nc(l) + u ∩ k

The corresponding positive root system is

(9.3e) ∆+
c = ∆+

c (L) ∪ −∆(u ∩ k, Tf ).
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In the setting of (9.1), we will refer to such choices of fundamental Cartan
and positive root systems as compatible.

The identifications

R(K) 'W (K,Tf )/W (K0, Tf,0),

R(L ∩K) 'W (L ∩K,Tf )/W ((L ∩K)0, Tf,0)

and the obvious inclusion of Weyl groups define a natural map

(9.3f) R(L ∩K)→ R(K)

It is not difficult to show that this map is an inclusion.
We will be using Proposition 3.4 for both L and G, so we need to choose

the sets P (K) and P (L ∩ K) defined there in a compatible way. It turns
out that we need not have P (L ∩K) ⊂ P (K). For example, if L is locally
isomorphic to SL2(R), then P (L ∩K) is always a single root; but this root
will be in P only under special circumstances. Because of this fact, it is not
clear what “compatible” ought to mean for P .

Proposition 9.4. In the setting of (9.3), suppose A ⊂ P (L ∩K) is such
that wA ∈ R(L ∩K) (cf. Proposition 3.4). Then A ⊂ P (K) ∪ −P (K), and
wA ∈ R(K).

It follows from this proposition that

Pess(L ∩K) ⊂ Pess(K) ∪ −Pess(K).

(notation as in (3.5)). It therefore makes sense to require

(9.5) Pess(L ∩K) ⊂ Pess(K)

as the compatibility requirement between P (K) and P (L ∩K).

Theorem 9.6. Suppose we are in the setting of (9.1); choose compatible
positive root systems ∆+(L∩K,Tf ) ⊂ ∆+(K,Tf ) as in (9.3), and compatible
sets P (K) and P (L∩K) as in (9.5). Suppose that (τq, Eq) is an irreducible
representation of L ∩ K, of extended highest weight µ̃q (Definition 3.11).
Define a generalized Verma module

MK(τq) = U(k) ⊗q∩k Eq,

which is a (k, L∩K)-module. Write Lk for the kth Bernstein derived functor
carrying (k, L ∩K)-modules to K-modules, and S = dim u ∩ k. Define

ζk = dµq + ρ(u ∩ k) + ρ(l ∩ k) ∈ t∗f ,

a weight parametrizing the infinitesimal character of the generalized Verma
module MK(τq).

(1) If ζk vanishes on any coroot of K, then Lk(MK(τq)) = 0 for every
k. Suppose henceforth that ζk is regular for K.
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(2) If ζk is dominant for ∆+(K,Tf ), then the generalized Verma module
MK(τq) is irreducible. In this case Lk(MK(τq)) = 0 for k 6= S. The
K representation LS(MK(τq)) is generated by the highest weight

µ = µq ⊗ 2ρ(u ∩ k).

The corresponding extended group Tfl(µ) (Proposition 3.4) contains
Tfl(µq) (via the inclusion of (9.3f)), and the representation of Tfl(µ)
on the µ weight space is

Ind
Tfl(µ)

Tfl(µq) µ̃;

here µ̃ denotes the representation µ̃q⊗2ρ(u∩k) of Tfl(µq). In partic-
ular, if the R-groups R(L∩K,µq) and R(K,µ) are equal (under the
inclusion (9.3f)), then LS(MK(τq)) is the irreducible representation
of K of extended highest weight µ̃ (Definition 3.11).

(3) In general, let w ∈ W (K0, Tf,0) be the unique element so that ζk is
dominant for w(∆+(K,Tf )). Define k = k(µq) = S−l(w) (with l(w)
the length of the Weyl group element w). The number k is equal to
the cardinality of the set of roots

B = {α ∈ ∆(u, Tf ) ∩ −w∆+(K,Tf )}.

and

µ = µq +
∑

α∈B

α;

this weight has differential ζk−wρc. In this case Lk(MK(τq)) = 0 for
k 6= k0. The K representation Lk0

(MK(τq)) includes the extremal
weight µ. [Check how R groups work; does R(L ∩K,µq) fix µ? No,
this is kind of a mess; skip it.]

10. Standard representations, limits, and continuations

Throughout this section we will fix a θ-stable real Cartan subgroup H as
in (5.1), with compact part T = Hθ and split part A = H−θ. (Recall that
in our notation A is usually not connected: it is the identity component A0

that is the vector group of traditional notation, figuring in the direct product
Cartan decomposition H = TA0.) We will be constructing representations
of G attached to characters of H. The constructions will rely in particular
on two Levi subgroups between H and G. In Harish-Chandra’s work the
most important is

(10.1a) M = ZG(A0).

This is a reductive algebraic subgroup of G, equal to the group of real points
of M = ZG(Ae). The roots of H in M are precisely the imaginary roots of
H in G:

(10.1b) ∆(M,H) = ∆im(G,H).
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Once again our notation is a little different from the classical notation,
in which M usually denotes the interesting factor in the direct product
decomposition (often called “Langlands decomposition”)

ZG(classical A) = (classical M)× (classical A).

This notation is inconvenient for us because the classical M need not be the
real points of a connected reductive algebraic group.

Clearly the Cartan subgroup H is fundamental in M , so we can use the
results of Section 4 to make representations of M from characters of H.
The great technical benefit of using M is that M contains a maximally split
Cartan subgroup Hs of G. The two Cartan decompositions

G = K(As,0)K, M = (M ∩K)(As,0)(M ∩K)

allow one to compare “behavior at infinity” on M and on G directly. (Such
analysis is at the heart of Harish-Chandra’s work, and of Langlands’ proof
of his classification of Π∗(G). We will not make explicit use of it here.)

At the same time we will use

(10.1c) L = ZG(T0).

This is a reductive algebraic subgroup of G, equal to the group of real points
of L = ZG(Te). The roots of H in L are precisely the real roots of H in G:

(10.1d) ∆(L,H) = ∆re(G,H).

The Cartan subgroup H is split in L, so the results of Section 6 tell us about
representations of L attached to characters of H. The great technical benefit
of using L is that L contains a fundamental Cartan subgroup Hf of G. For
that reason representations of L ∩K are parametrized (approximately) by
characters of Tf , which in turn (approximately) parametrize representations
of K.

Definition 10.2. In the setting of (10.1), a shifted Harish-Chandra param-
eter for a standard representation is a pair

Φ = (φ,∆+
im)

(with φ ∈ Π∗(H) a character and ∆+
im ⊂ ∆im(G,Hf ) a system of positive

roots) subject to the following requirement:

(1-std) For every positive imaginary root α ∈ ∆+
im, we have

〈dφ, α∨〉 > 1.

We define

P s
G(H) = shifted parameters for standard representations

= pairs (φ,∆+
im) satisfying condition (1-std) above.

(The superscript s stands for “shifted”; it is a reminder that this parameter
differs by a ρ shift from the Harish-Chandra parameter.)
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The imaginary roots divide into compact and noncompact as usual, ac-
cording to the eigenvalue of θ on the corresponding root space:

∆+
im,c = positive imaginary roots in k,

∆+
im,n = remaining imaginary roots.

Define

2ρim =
∑

α∈∆+

im

α, 2ρim,c =
∑

β∈∆+

im,c

β 2ρim,n =
∑

γ∈∆+

im,n

γ.

Each of these characters may be regarded as belonging either to the group
of real characters Π∗

adm(H) or to the algebraic character lattice Π∗
alg(H).

The lattice of characters may be embedded in h∗ by taking differentials, so
we may also regard these characters as elements of h∗. There they may be
divided by two, defining ρim, ρim,c, and ρim,n in h∗.

The infinitesimal character parameter for Φ is

ζ(Φ) = dφ− ρim ∈ h∗;

we write

ζ(Φ) = λ(Φ) + ν(Φ) (λ(Φ) ∈ t∗, ν(Φ) ∈ a∗)

More generally, a shifted Harish-Chandra parameter for a standard limit
representation is a pair

Φ = (φ,∆+
im

(with φ ∈ Π∗(H) a character and ∆+
im ⊂ ∆im(G,Hf ) a system of positive

roots) subject to the following requirement:

(1-lim) For every positive imaginary root α ∈ ∆+
im, we have

〈dφ, α∨〉 ≥ 1.

We define

P s,lim
G (H) = shifted parameters for limits of standard representations

= pairs Φ = (φ,∆+
im) satisfying condition (1-lim) above.

Finally, a shifted Harish-Chandra parameter for a continued standard rep-
resentation is a pair

Φ = (φ,∆+
im)

with φ ∈ Π∗(H), ∆+
im a system of positive imaginary roots, and no positivity

hypothesis. We define

P s,cont
G (H) = shifted parameters for continued standard representations

= pairs (φ,∆+
im).

For limit and continued parameters we can define the infinitesimal char-
acter parameter ζ(Φ) in the obvious way.
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For each kind of parameter there is a discrete part, which remembers only
the restriction φd of the character φ to the compact torus T . We write for
example

P s,lim
G,d (H) = shifted disc. params. for limits of standard reps.

= pairs Φd = (φd,∆
+
im) satisfying condition (1-lim) above.

A given discrete parameter has a distinguished extension to a full parameter,
namely the one which is trivial on A0 (the vector subgroup of H). By using

this extension, we may regard P s,lim
G,d (H) as a subset of P s,lim

G (H).

Proposition 10.3. In the setting of Definition 10.2, suppose Φ ∈ P s
G(H)

is a shifted Harish-Chandra parameter for a standard representation. Then
there is a standard representation I(Φ) for G attached to Φ, which may be
constructed as follows. Choose a real parabolic subgroup

P = MN ⊂ G

in such a way that the real part of the differential dφ|a is weakly dominant for
all the roots of H in N . Let IM (Φ) be the fundamental series representation
of M specified by Proposition 4.2; this is in fact a (relative) discrete series
representation of M . Define

I(Φ) = IndG
MN IM (Φ)⊗ 1

(normalized induction), a standard representation of G. It is always non-
zero, and its restriction to K (which is

I(Φ)|K = IndK
M∩K IM (Φ)|M∩K

depends only on the restriction of Φ to T . The infinitesimal character of
I(Φ) corresponds to the weight ζ(Φ) ∈ h∗ of Definition 10.2. This standard
representation has a Langlands quotient J(Φ), which is always non-zero but
may be reducible. We have

I(Φ) ' I(Ψ)⇐⇒ J(Φ) ' J(Ψ)⇐⇒ Ψ ∈W (G,H) · Φ.

For limits of standard representations the situation is quite similar; the
main problem is that the corresponding representation of G may vanish.
Here is a statement.

Proposition 10.4. In the setting of Definition 10.2, suppose Φ ∈ P s,lim
G (H)

is a shifted Harish-Chandra parameter for a standard limit representation.
Then there is a standard limit representation I(Φ) for G attached to Φ, which
may be constructed by parabolic induction exactly as in Proposition 10.3.
The infinitesimal character of I(Φ) corresponds to the weight ζ(Φ) ∈ h∗

of Definition 10.2. Its restriction to K depends only on the restriction of
Φ to T . This standard limit representation representation has a Langlands
quotient J(Φ). We have

Ψ ∈W (G,H) · Φ =⇒ I(Φ) ' I(Ψ)⇐⇒ J(Φ) ' J(Ψ).
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Define

µ(Φ) = [φ− 2ρim,c]|T ∈ Π∗(T ).

Then the following three conditions are equivalent:

(1) the weight µ(Φ) is dominant with respect to the compact imaginary
roots ∆+

im,c;

(2) there is no simple root for ∆+
im which is both compact and orthogonal

to φ− ρim; and
(3) the standard limit representation I(Φ) is non-zero.

Here is the result for coherent continuation.

Proposition 10.5. In the setting of Definition 10.2, suppose Φ ∈ P s,cont
G (H)

is a shifted Harish-Chandra parameter for continued standard representa-
tions. Then there is a virtual representation I(Φ) = IG(Φ) for G with the
following properties.

(1) If P = MN is any parabolic subgroup of G with Levi factor M , then

I(Φ) = IndG
MN IM (Φ),

where the inducing (virtual) representation on the right is the one
described in Proposition 4.4.

(2) The restriction of I(Φ) to K depends only on ∆+
im and the restriction

of φ to T . Explicitly,

I(Φ)|K = IndK
M∩K IM (Φ)|M∩K .

(3) We have

I(Φ) ' I(w · Φ) (w ∈W (G,H)).

(4) The virtual representation I(Φ) has infinitesimal character corre-
sponding to ζ(Φ,∆+

im) ∈ h∗.

(5) If ζ(Φ) is weakly dominant for ∆+
im, then I(Φ) is equivalent to the

standard limit representation attached to Φ in Proposition 10.4.
(6) Suppose V is a finite-dimensional representation of G. Recall that

∆(V,H) denotes the multiset of weights of H on V (Definition 2.2).
Then

I(Φ)⊗ V '
∑

δ∈∆(V,H)

I(Φ + δ).

In order to describe lowest K-types of standard representations, it is con-
venient to give a completely different construction of them, by cohomological
induction. We begin with coherent continuations of standard representa-
tions, later specializing to the standard representations themselves.

Fix a parameter

(10.6a) Φ = (φ,∆+
im) ∈ P s,cont

G (H)
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(Definition 10.2). Recall the Levi subgroup L ⊃ H defined in (10.1c), cor-
responding to the real roots. A θ-stable parabolic subalgnebra q = l + u is
called weakly Φ-compatible if

(10.6b) ∆+
im ⊂ −∆(u,H).

We may also say that Φ is weakly q-compatible, or that Φ and q are weakly
compatible. Here is a way to construct (any) such q. Fix a generic element

(10.6c) τ ∈ it∗0

which is dominant for ∆+
im. The “genericity” we require of τ is that the only

roots to which τ is orthogonal are the real roots of H in G. Attached to any
such generic τ there is a weakly compatible q = q(τ) = l+u(τ) characterized
by

(10.6d) ∆(u(τ),H) = {α ∈ ∆(G,H) | 〈τ, α∨〉 < 0}.

When Φ is actually a standard limit parameter, we will sometimes wish to
require more of q. Recall the weight λ = λ(Φ) ∈ t∗ attached to Φ (Definition
10.2). We say that q is strongly Φ-compatible if it is weakly Φ-compatible,
and in addition

(10.6e) 〈λ, α〉 ≤ 0, (α ∈ ∆(u,H)).

Again we may say that Φ is strongly q-compatible, or that the pair is strongly
compatible. Here is a way to construct (any) strongly Φ-compatible para-
bolic. Since λ is weakly dominant for ∆+

im, the weight

(10.6f) τ1 = λ+ ετ

is dominant for ∆+
im and generic as long as ε is a small enough positive real;

and in that case q(τ1) is strongly Φ-compatible. A little more explicitly,
(10.6g)

∆(u(τ1),H) = {α ∈ ∆ | 〈λ, α∨〉 < 0, or 〈λ, α∨〉 = 0 and 〈τ, α∨〉 < 0}.

Notice that, just as in the definition of Borel subalgebra for k in Definition
2.3, we have put the negative roots in the nil radical. One effect (roughly
speaking) is that Verma modules constructed using q and (standard limit)
Φ tend (in the strongly compatible case) to be irreducible. (This state-
ment is not precisely true, for example because the definition of strongly
Φ-compatible ignores ν(Φ) (Definition 10.2).)

The involution θ preserves ∆(u,H). The fixed points are precisely the
imaginary roots ∆+

im. The remaining roots therefore occur in pairs

(10.6h) {α, θα} (α complex in ∆(u,H)).

Evidently the two roots α and θα have the same restriction to T = H θ. In
this way we get a well-defined character

(10.6i) ρcplx =
∑

pairs {α, θα}
cplx in ∆(u, H)

−α|T ∈ Π∗
adm(T ).
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Extending this character to be trivial on A0, we get ρcplx ∈ Π∗
adm(H). As

the notation suggests, the differential of this character is equal to half the
sum of the complex roots in uop, which we are thinking of as positive. [At
least in the strongly Φ-compatible case when I(Φ) 6= 0, it turns out that this
parabolic q, and therefore the character ρcplx, is unique up to the stabilizer
of Φ in W (G,H). I don’t see directly why that should be true.]

Now define

(10.6j) Φq = (φ⊗ ρcplx, ∅) ∈ P
s
L(H),

a (shifted) Harish-Chandra parameter for a principal series representation
of L. The corresponding infinitesimal character parameter for L is

(10.6k) ζl(Φq) = dφq = dφ+ ρcplx = ζ(Φ) + ρim + ρcplx = ζg(Φ)− ρ(u);

the last equality is equivalent to q being weakly Φ-compatible. This is the
infinitesimal character of the standard principal series representation IL(Φq).

We can now form the generalized Verma module

(10.6l) M(Φq) = U(g)⊗q IL(Φq),

which is a (g, L ∩K)-module. Its infinitesimal character is given by adding
the half sum of the roots of u to the infinitesimal character of IL(Φq); it is
therefore equal (still in the weakly Φ-compatible case) to ζ(Φ).

Theorem 10.7. Suppose Φ ∈ P s,cont
G (H) is a parameter for a continued

standard representation (Definition 10.2) and q = l + u is a weakly Φ-
compatible parabolic (see (10.6)). Write Lk for the kth Bernstein derived
functor carrying (g, L ∩K)-modules to (g,K)-modules, and S = dim u ∩ k.
Then the virtual representation I(Φ,∆+

im) may be constructed from the gen-
eralized Verma module M(Φq) of (10.6l):

I(Φ) =
S∑

k=0

(−1)kLS−k(M(Φq))

Suppose from now on that Φ is a standard limit parameter (Definition
10.2), and that q is strongly Φ-compatible (cf. (10.6)). Then

Lk(M(Φq)) =

{
I(Φ) k = S

0 k 6= S.

Write A(Φq) for the set of lowest L ∩ K-types of the principal series
representation I(Φq) (Proposition 6.5), and A(Φ) for the set of lowest K-
types of the standard limit representation I(Φ). If µ̃q is an extended highest
weight of τq ∈ A(Φq) (Definition 3.11), define µ̃ = µ̃q ⊗ 2ρ(u ∩ k) as in
Theorem 9.6. There are two possibilities.

(1) If µ is dominant for ∆+
c , then µ̃ is an extended highest weight of the

irreducible K-representation

τ = LS(MK(τq)),
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In this case the bottom layer map of [5] exhibits τ as a lowest K-type
of I(Φ).

(2) If µ is not dominant for ∆+
c , then

LS(MK(τq)) = 0.

In both cases Lk(MK(τq)) = 0 for k 6= S. This construction defines an
inclusion

A(Φ) ↪→ A(Φq), τ 7→ τq.

The first assertions of the theorem (those not referring to lowest K-types)
are special cases of Theorem 11.8, which will be formulated and proved in
section 11.

This theorem (in conjunction with the dotting of the i’s in Theorem 9.6)
effectively computes the highest weight parameters of the lowest K-types
of I(Φ) by reduction to the special case of principal series for split groups,
which was treated in Section 6.

Definition 10.8. Suppose Φ ∈ P s,lim(G) is a standard limit parameter
(Definition 10.2). We say that Φ is final if

(1) the standard limit representation I(Φ) (Proposition 10.3) is not zero;
and

(2) if we choose a strongly Φ-compatible θ-stable parabolic subalgebra q

as in (10.6), then Φq is a final limit parameter for L (Definition 6.7)

Conditions equivalent to (1) are given in Proposition 10.4. The second
condition is equivalent to

(2′) for every real root α of H in G,

either 〈dφq, α
∨〉 6= 0 or φq(mα) = 1.

If Φ is discrete, the requirement is that φq(mα) = 1 for every real root α.)

We write P s,finlim
G (H) for the set of final limit parameters for H.

Theorem 10.9. Suppose Φ ∈ P s,lim
G,d (H) is a discrete standard limit param-

eter (Definition 10.2) and q = l + u is a strongly Φ-compatible parabolic
(see (10.6)). Assume that Φ satisfies condition (2) in the definition of final
(cf. Definition 10.8): that is, that φq(mα) = 1 for every real root α of H in
G. Then A(Φq) (Proposition 6.5) consists of a single irreducible representa-
tion τq of L∩K, which is trivial on Lder∩K and therefore one-dimensional.
Write µ̃q for the (unique) extended highest weight of τq (Definition 3.11),
and define µ̃ = µ̃q ⊗ 2ρ(u ∩ k) as in Theorem 9.6. Then Φ is final—that is,
I(Φ) 6= 0—if and only if µ is dominant with respect to ∆+

c .
Assume now that Φ is final (so that µ is dominant for K). Then the

irreducible K representation τ(Φ) of extended highest weight µ̃ is the unique
lowest K-type of I(Φ).

The correspondence Φ 7→ τ(Φ) is a bijection from K-conjugacy classes of
discrete final limit parameters for G onto Π∗(K).
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11. More constructions of standard representations

Proposition 10.3 and Theorem 10.7 describe two constructions of standard
representations of G (and, implicitly, of their restrictions to K). In order
to get an algorithm for branching from G to K, we need to generalize these
constructions. In fact we will make use only of the generalized construc-
tion by cohomological induction; but the generalization for real parabolic
induction is easier to understand and serves as motivation, so we begin with
that.

As in (5.1) and Section 10, we fix a θ-stable real Cartan subgroup

(11.1a) H ⊂ G, T = Hθ, A = H−θ.

Fix also a shifted Harish-Chandra parameter for a continued standard rep-
resentation

(11.1b) Φ = (φ,∆+
im) ∈ P s,cont

G (H)

(Definition 10.2). Recall that φ is a character of H, and ∆+
im a system of

positive roots for the imaginary roots of H in G. We will make extensive
use of the infinitesimal character parameter

(11.1c) ζ(Φ) = dφ− ρim ∈ h∗

(Definition 10.2).
We now fix the parabolics we will use to construct continued standard

representations. If P is any real parabolic subgroup of G, thenM = P∩θ(P )
is a Levi subgroup. If N is the unipotent radical of P , it follows that
P = MN is a Levi decomposition. We want to fix such a subgroup with the
property that H is contained in M :

(11.1d) P = MN real parabolic, H ⊂M.

The smallest possible choice for M is the subgroup

(11.1e) M1 = ZG(A0) ⊂M

introduced in (10.1). One way to see this containment is to notice that com-
plex conjugation must permute the roots of H in n, but complex conjugation
sends the roots of H in m1 to their negatives. Because all the imaginary
roots of H occur in M , we may regard our fixed parameter as a parameter
for M :

(11.1f) Φ = (φ,∆+
im) ∈ P s,cont

M (H).

In the same way, we fix a θ-stable parabolic subalgebra as in (9.1) subject
to two requirements: first, that L contain H

(11.1g) q = l + u θ-stable parabolic, H ⊂ L;

and second, that

(11.1h) ∆im(u, h) ⊂ −∆+
im.
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The smallest possible choice for L is the subgroup

(11.1i) L1 = ZG(T0) ⊂ L

introduced in (10.1). To see this containment, notice that the action of θ
must permute the roots of H in u, but sends the roots of H in l1 to their
negatives.

A θ-stable parabolic subalgebra satisfying conditions (11.1g) and (11.1h)
is called weakly Φ-compatible. In case L = L1, this is precisely the notion
introduced in (10.6); all that has changed here is that we are allowing L to
be larger than L1. Just as in the earlier setting, we may say instead that Φ
is weakly q-compatible, or that Φ and q are weakly compatible.

Just as in (10.6i), the non-imaginary roots of H in u occur in complex
pairs {α, θα}, and we define

(11.2a) ρcplx =
∑

pairs {α, θα}
cplx in ∆(u, H)

−α|T ∈ Π∗
adm(T ).

Extending this character to be trivial on A0, we get ρcplx ∈ Π∗
adm(H). Put

(11.2b) φq = φ⊗ ρcplx ∈ Π∗(H), ∆+
im(L) = ∆+

im ∩∆(l,H).

We have

(11.2c) Φq = (φq,∆
+
im(L)) ∈ P s,cont

L (H), ζl(Φq) = ζg(Φ)− ρ(u).

Here ρ(u) = −dρcplx − ρim + ρim(L) is half the sum of the roots of h in u.
We will have occasion to later to invert the correspondence Φ → Φq.

Suppose therefore that q = l + u is a θ-stable parabolic subalgebra as in
(9.1), that H ⊂ L is a θ-stable Cartan subgroup, and that

(11.3a) Ψ = (ψ,∆+
im(L)) ∈ P s,cont

L (H)

is a Harish-Chandra parameter for a continued standard representation of
L. Define

(11.3b) ∆+
im = ∆+

im(L) ∪ −∆im(u,H);

this is a set of positive imaginary roots for H in G. Write

(11.3c) ψq
g = ψ ⊗ ρ−1

cplx.

Then

(11.3d) Ψq
g = (ψq

g,∆
+
im) ∈ P s,cont

G (H).

The infinitesimal character parameters are related by

(11.3e) ζg(Ψ
q
g) = ζl(Ψ) + ρ(u).

In order to discuss standard limit representations, we will sometimes want
to impose stronger hypotheses on the relationship between Φ and q. Recall
from Definition 10.2 the weight λ(Φ) ∈ t∗. We say that q is strongly Φ-
compatible if it is weakly Φ-compatible (cf. (11.1g), (11.1h)), and in addition

(11.4a) 〈λ(Φ), α∨〉 ≤ 0, α ∈ ∆(u,H).
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We will also say that Φ is strongly q-compatible, or that Φ and q are strongly
compatible.

Proposition 11.5. In the setting (11.1), suppose that Φ = (φ,∆+
im) is a

shifted Harish-Chandra parameter for a continued standard representation.
Then the corresponding virtual representation IG(Φ) (Proposition 10.5) may
be realized as

IG(Φ) = IndG
MN IM (Φ).

In particular, its restriction to K is

IG(Φ)|K = IndK
M∩K IM (Φ,∆+

im)|M∩K .

Proof. Choose a parabolic subgroup P1 = M1N1 ⊂ M with Levi factor
M1 = ZG(A0) as in Proposition 10.3. Then Q1 = M1(N1N) is a parabolic
subgroup of G. According to Proposition 10.5 (applied first to G and then
to M) we have

IG(Φ) = IndG
M1(N1N) IM1

(Φ),

IM (Φ) = IndM
M1N1

IM1
(Φ).

Applying induction by stages to these two formulas gives the main claim of
the proposition. The second follows because

G = KP, P ∩K = M ∩K.

�

Some care is required on one point. If Φ is a standard limit parameter,
then the standard limit representations IG(Φ) and IM (Φ) are both actual
representations (not merely virtual representations). The main identity of
Proposition 11.5 therefore makes sense as an identity of representations. It
need not be true. The theorem asserts only that it is true on the level of
virtual representations; that is, that both sides have the same irreducible
composition factors, appearing with the same multiplicities.

To see an example of this, suppose G = GL4(R), andH is the split Cartan
subgroup consisting of diagonal matrices. There are no imaginary roots, so
we omit the empty set of positive imaginary roots from the notation. We
have

(11.6a) H = {h = (h1, h2, h3, h4) | hi ∈ R×};

the hi are the diagonal entries of h. We consider the character φ of H defined
by

(11.6b) φ(h) = |h1|
3/2|h2|

−3/2|h3|
1/2|h4|

−1/2.

Regarded as an element of P s
G(H), this is the Harish-Chandra parameter of

the trivial representation of G. The corresponding standard representation
IG(Φ) is the space of densities on the full flag variety of G (the space of
complete flags in R4). In order to realize this, we need to use a non-standard
Borel subgroup B containing H (consisting neither of upper triangular nor
of lower triangular matrices).
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Now define M = GL2 × GL2. The representation IM (Φ) has its unique
irreducible quotient the finite-dimensional representation C3⊗C1 of GL2 ×
GL2. The first of these is the quotient of the adjoint representation of GL2

by the center. This quotient carries an invariant Hermitian form (related
to the Killing form of the first GL2 factor. It follows that the induced
representation

(11.6c) IndG
MN IM (Φ)

has as a quotient the unitarily induced representation

(11.6d) IndG
MN C3 ⊗C1.

This quotient carries a non-degenerate invariant Hermitian form (induced
from the one for M).

It is an easy consequence of the Langlands classification that only the
Langlands quotient of a standard representation (and not some larger quo-
tient) can carry a non-degenerate invariant Hermitian form. For this reason,

the induced representation IndG
MN IM (Φ) cannot be isomorphic to the stan-

dard representation IG(Φ).
Our next task is to realize continued standard representations by cohomo-

logical induction from the θ-stable parabolic subalgebra q of (11.1) (assumed
always to be weakly Φ-compatible). Just as in (10.6), we begin with the vir-
tual representation

(11.7a) IL(Φq)

of L. (Whatever construction we use for this virtual representation will
construct it as a difference of two (l, L ∩ K)-modules of finite length; for
example the even and odd degrees respectively of some cohomologically in-
duced representations. We will have no need to be very explicit about this.)
We can therefore construct the (virtual) generalized Verma module

(11.7b) M(Φq) = U(g)⊗q IL(Φq),

which is a (virtual) (g, L ∩K)-module. Its infinitesimal character is given
by adding the half sum of the roots of u to the infinitesimal character of
IL(Φq); it is therefore (in light of (11.2c)) equal to ζ(Φ).

Theorem 11.8. Suppose Φ = (φ,∆+
im) ∈ P s,cont

G (H) is a parameter for a
continued standard representation (Definition 10.2) and q = l+u is a weakly
Φ-compatible parabolic (see (11.1)). Write Lk for the kth Bernstein derived
functor carrying (g, L ∩K)-modules to (g,K)-modules, and S = dim u ∩ k.
Then the virtual representation IG(Φ) may be constructed from the virtual
generalized Verma module M(Φq) of (11.7b):

IG(Φ) =
S∑

k=0

(−1)kLS−k(M(Φq))
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Suppose in addition that Φ is a standard limit parameter, and that q is
strongly Φ-compatible (cf. (11.4)). Then

Lk(M(Φq)) =

{
IG(Φ) k = S

0 k 6= S.

Proof. We begin with the last assertion of the theorem, concerning the case
when q is strongly Φ-compatible. In this case the claim amounts to Theorem
11.225 of [5].

For the first assertions, we look at the family of parameters

Φ + γ = (φ⊗ γ,∆+
im), (γ ∈ Π∗(H))

The family of virtual representations IG(Φ + γ) is a coherent family ([7],
Definition 7.2.5); this is the how continued standard representations are
defined. The family of virtual representations appearing on the right side
of the first formula in the proposition is also coherent; this is proved in
the same way as [7], Corollary 7.2.10. Two coherent families coincide if
and only if they agree for at least one choice of γ with the property that
the infinitesimal character ζ(Φ + γ) is regular. If γ0 is sufficiently negative
for the roots of H in u—for example, if γ0 is a large enough multiple of
−2ρ(u)—then q is strongly (Φ+ γ)-compatible whenever γ is close to γ0. In
this case the equality of the two sides is a consequence of the last assertion
of the theorem. Most such choices of γ will make ζ(Φ + γ) regular, and so
force the two coherent families to coincide. �

Theorem 11.8 is phrased to construct a given (continued) standard rep-
resentation of G by cohomological induction. We will also want to use it to
identify the result of applying cohomological induction to a given (continued)
standard representation of L, and for this a slight rephrasing is convenient.

Theorem 11.9. Suppose q = l + u is a θ-stable parabolic subalgebra of g,
H ⊂ L a θ-stable Cartan subgroup, and Ψ = (ψ,∆+

im(L)) ∈ P s,cont
L (H) is

the Harish-Chandra parameter for a continued standard representation of L.
Define

Ψq
g = (ψq

g,∆
+
im) ∈ P s,cont

G (H)

as in (11.3).

(1) The parabolic q is weakly Ψq
g-compatible (see (11.1)). We may there-

fore transfer Ψq
g to a parameter for L as in (11.2), and we have

(Ψq
g)q = Ψ.

(2) Write IL(Ψ) for the virtual (l, L∩K)-module attached to the param-
eter Ψ, and

M(Ψ) = U(g)⊗q IL(Ψ)
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for the corresponding virtual (g, L ∩ K)-module. Write Lk for the
kth Bernstein derived functor carrying (g, L∩K)-modules to (g,K)-
modules, and S = dim u ∩ k. Then

S∑

k=0

(−1)kLS−k(M(Ψ)) = IG(Ψq
g).

(3) Suppose now that Ψ is a standard limit parameter for L, so that
IL(Ψ) is an actual representation, and M(Ψ) is an actual (g, L∩K)-
module. Write λL(Ψ) for the weight introduced in Definition 10.2,
and

λG(Ψq
g) = λL(Ψ) + ρ(u).

Then q is strongly Ψq
g-compatible if and only if λG(Ψq

g) is weakly
antidominant for the roots of H in u. If this is the case, then

Lk(M(Ψ)) =

{
IG(Ψq

g) k = S

0 k 6= S.

Proof. The assertions in (1) are formal and very easy. With these in hand,
the rest of the theorem is just Theorem 11.8 applied to the parameter Ψq

g ∈

P s,cont
G (H). �

We conclude this section with some results on the restrictions to K of
cohomologically induced representations. Generalizing (11.7), we begin with
a virtual representation Z of L of finite length. The restriction of Z to L∩K
decomposes as a (virtual) direct sum

(11.10a) Z =
∑

τ∈Π∗(L∩K)

Z(τ);

here the finite-dimensional virtual representation Z(τ) is a (positive or neg-
ative) multiple of the irreducible representation τ . From Z we construct a
virtual generalized Verma module

(11.10b) M(Z) = U(g)⊗q Z.

This is a virtual (g, L ∩K)-module. We will need to know the restriction
of M(Z) to (k, L ∩ K). This will be described in terms of the generalized
Verma modules of Theorem 9.6: if E is a (virtual) (q∩ k, L∩K) module, we
write

(11.10c) MK(E) = U(k)⊗q∩k E,

which is a (virtual) (k, L ∩K)-module. The restriction formula we need is

(11.10d) M(Z)|(k,L∩K) =
∑

m≥0

MK(Z ⊗ Sm(g/(k + q))).

Even if Z is a an actual representation, the restriction formula (11.10d) is
true only on the level of virtual representations. The Verma module M(Z)
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has a (k, L ∩K)-stable filtration for which the mth level of the associated
graded module is given by the mth term in (11.10d).

It is worth noticing that the restriction formula (11.10d) depends only on
Z|L∩K . We will deduce from this a formula for

∑
k(−1)kLS−k(M(Z))|K ,

again depending only on Z|L∩K . If Z is an actual representation, one might
guess that each individual representation LS−k(M(Z))|K depends only on
Z|L∩K . This guess is incorrect. [Try to make example in SL2(C) with
L = H, Z one-dimensional and trivial on T .]

One of the main steps in our program to get branching laws for standard
representations is to write irreducible representations of K explicitly as in-
teger combinations of cohomologically induced representations. For that we
will need to get rid of the infinite sum in (11.10d), and this we do using a
Koszul complex. Recall from (1.5) the decomposition g = k + s. This is
compatible with the triangular decomposition

(11.10e) g = uop + l + u,

so we get

(11.10f) g/(k + q) '= uop ∩ s

as representations of L ∩K. Now consider the (q ∩ k, L ∩K)-modules

(11.10g) E+(q) =
∑

p even

∧p
g/(k + q), E−(q) =

∑

p odd

∧p
g/(k + q)

and the virtual (q ∩ k, L ∩K)-module

(11.10h) E±(q) = E+ −E− =
∑

p

(−1)p
∧p

g/(k + q).

Proposition 11.11. Suppose we are in the setting of (11.10), so that q is
a θ-stable parabolic subalgebra of g, and Z is a virtual representation of L
of finite length. Then

∑

k

(−1)kLS−k(M(Z))|K =
∑

m≥0

∑

k

(−1)kLS−k (MK(Z ⊗ Sm(g/(k + q))))

Suppose now that we can find a virtual (l, L∩K)-module of finite length Z±

with the property that

Z±|L∩K = (Z|L∩K)⊗E±

(see (11.10h)). Then
∑

k

(−1)kLS−k(M(Z±))|K =
∑

k

(−1)kLS−k (MK(Z)) .

Proof. The first assertion (which is due to Zuckerman) is a version of [7],
Theorem 6.3.12. For the second, the Koszul complex for the vector space
g/(k + q) provides an equality of virtual (l, L ∩K)-modules

(11.12)
∑

p

(−1)p
∧p (

g/(k + q)
)
⊗ Sm−p

(
g/(k + q

)
=

{
0, m > 0

C, m = 0.
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More precisely, the Koszul complex has the pth summand on the left in
degree p, and a differential of degree −1; its cohomology is zero for m > 0,
and equal to C in degree zero for m = 0. Tensoring with Z and applying
the first assertion, we get the second assertion. �

Information about how to compute Lk(MK(E)) (for E an irreducible
representation of L ∩K) may be found in Theorem 9.6. We will need only
the very special case of “bottom layer K-types” for standard representations,
described in Theorem 10.7.

It is by no means obvious a priori that the virtual L representation Z±

should exist. The L∩K representations E+ and E− need not extend to L, so
we cannot proceed just by tensoring with finite-dimensional representations
of L. We will be applying the proposition to continued standard represen-
tations Z, and in that case we are saved by the following result (applied to
L instead of G).

Lemma 11.13. Suppose Φ = (φ,∆+
im) ∈ P s,cont

G (H) is a shifted Harish-
Chandra parameter for a continued standard representation, and that (τ, E)
is a finite-dimensional representation of K. Write T = H ∩K, and

τ |T =
∑

γT ∈Π∗(T )

mE(γT )γT ;

here the integer multiplicities mE(γT ) are finite and non-negative. For each
γT , choose an extension γ ∈ Π∗(H) of the character γT to H; for example,
one can choose the unique extension trivial on A0. Write

Φ + γ = (φ⊗ γ,∆+
im) ∈ P s,cont

G (H).

Then (
IG(Φ)⊗E

)
|K '

∑

γT ∈Π∗(T )

mE(γT )IG(Φ + γ)|K .

What the lemma says is that we can find an expression writing

(continued standard)⊗(representation of K)

as the restriction to K of a finite sum of continued standard representations
of G. To make it explicit, we need to be able to compute the restriction of
the representation of K to T . Computing such a restriction for a general
representation of K is one of those problems that we claimed [that is, plan
to claim] in the introduction is too difficult. In the present setting we are
interested only in restricting the representations E±(q) defined in (11.10) to
T ⊂ H ⊂ L. This can be done explicitly in terms of the root decomposition
of H acting g.

Proof. If all of the roots of H in G are imaginary, then IG(Φ,∆+
im) is coho-

mologically induced from a character of H (Theorem 10.7), and the lemma
follows from the first formula in Proposition 11.11. The general case may
be reduced to this case by part (2) of Proposition 10.5. (Alternatively, one
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can begin with the case when all roots of H in G are real, and reduce to
that case using Theorem 10.7 and Proposition 11.11.) �

12. From highest weights to discrete final limit parameters

Theorem 10.9 describes in a more or less algorithmic way how to pass
from a discrete final limit parameter Φ to the highest weight of an irreducible
representation τ(Φ) of K. We need to be able to reverse this process: to
begin with the highest weight of an irreducible representation, and extract a
discrete final limit parameter. The algorithm of Theorem 10.9 uses a θ-stable
parabolic subalgebra q constructed (not quite uniquely) from Φ. Once we
have q, the algorithm is easily reversible. Our task therefore is to construct
q directly from τ . This is very close to the basic algorithm underlying the
classification of Π∗(G) as described in [7]. In this section we will describe
the small modification of that algorithm that we need.

We begin with a ∆+
c -dominant weight

(12.1a) µ ∈ Π∗
dom(Tf )

(Definition 2.3), and with 2ρc ∈ Π∗
dom(Tf ) the modular character of (3.3).

We will need the set of roots

(12.1b) Q±
0 (µ) = {β ∈ ∆(G,Tf ) | 〈µ+ 2ρc, β

∨〉 = 0}.

These roots are (the restrictions to Tf of) noncompact imaginary roots of
Hf in G; they are strongly orthogonal, and are the roots of a split Levi
subgroup L0(µ), locally isomorphic to a product of copies of SL2(R) and
an abelian group. The roots in Q0(µ) are going to be in the Levi subgroup
L(µ) that we ultimately construct. It is convenient to choose one root from
each pair ±β in Q±

0 (µ), and to call the resulting set Q0(µ). Consider the
Weyl group

(12.1c) W0(µ) = {wA =
∏

β∈A

sβ | A ⊂ Q0(µ)},

a product of copies of Z/2Z.
We now define

(12.1d) ∆+(G,Tf )(µ) = {α ∈ ∆(G,Tf ) | 〈µ+ 2ρc, α
∨〉 > 0} ∪Q0(µ).

This is the restriction to Tf of a θ-stable positive root system ∆+(G,Hf )(µ).
Of course it depends on the choice of Q0(µ); changing the choice replaces
∆+(µ) by wA∆+(µ) for some A ⊂ Q0(µ). This positive root system defines
a modular character

(12.1e) 2ρ(µ) =
∑

α∈∆+(µ)

α ∈ Π∗
alg(Hf );

this character is fixed by θ, and therefore trivial on Af,0. We write 2ρ(µ)
also for the restriction to Tf . Differentiating and dividing by two gives

ρ(µ) ∈ t∗f ⊂ h∗f .
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Construction of q: project the weight µ+2ρc−ρ(µ) on the ∆+(G,Tf )(µ)
positive Weyl chamber, getting a weight λ(µ). Write

µ+ 2ρc − ρ(µ) = λ(µ)− φ,

with φ a non-negative rational combination of ∆+(µ)-simple roots. Let q

be the parabolic corresponding to the set of simple roots whose coefficient
in φ is strictly positive. (Necessarily this includes the roots in Q0(µ).) This
is the one.

13. Algorithm for projecting a weight on the dominant Weyl

chamber

The algorithm of Section 12 depends on projecting a certain rational
weight on a positive Weyl chamber. In general (for example in the papers
of Carmona and Aubert-Howe) this projection is defined in terms of orthog-
onal geometry. Since the language of root data avoids the orthogonal form
(instead keeping roots and coroots in dual spaces) it is useful to rephrase
their results in this language. At the same time I will sketch an algorithm
to carry out the projection. So fix a root system in a rational or real vector
space. It is convenient to label this space as V ∗, and to have the coroots in
V :

(13.1a) ∆ ⊂ V ∗, ∆∨ ⊂ V.

We fix also sets of positive and simple roots

(13.1b) ∆+ ⊃ Π.

These give rise to fundamental weights and coweights

χα ∈ Q∆ ⊂ V ∗, 〈χα, β
∨〉 = δα,β , (α, β ∈ Π)

χ∨
α∨ ∈ Q∆∨ ⊂ V, 〈β, χ∨

α∨〉 = δα,β (α, β ∈ Π).
(13.1c)

We also need a small generalization: if B ⊂ Π, then

(13.1d) ∆(B) = ZB ∩∆

is a root system in V with simple roots B. (If ∆ is the root system for
a reductive algebraic group G, then ∆(B) corresponds to a Levi subgroup
L(B).) Write B∨ for the set of simple coroots corresponding to B. We
therefore get

(13.1e)
χα(B) ∈ Q∆(B) ⊂ V ∗, 〈χα(B), β∨〉 = δα,β (α, β ∈ B)

χ∨
α∨(B) ∈ Q∆∨(B) ⊂ V, 〈β, χ∨

α∨(B)〉 = δα,β (α, β ∈ B).

The question of constructing these elements explicitly will arise in the course
of the algorithm; of course the defining equations to be solved are linear with
integer coefficients.
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We are interested in the geometry of cones

C = {λ ∈ V ∗ | 〈λ, α∨〉 ≥ 0, α ∈ Π}

C∨ = {v ∈ V | 〈α, v〉 ≥ 0, α ∈ Π}

P = {
∑

aα≥0

aαα} ⊂ V
∗

P∨ = {
∑

bα∨≥0

bα∨α∨} ⊂ V

(13.1f)

the positive Weyl chambers and the positive root (coroot) cone respectively.
Sometimes it will be convenient as well to consider the two subspaces

Z∗ = {λ ∈ V ∗ | 〈λ, α∨〉 = 0, α ∈ Π}

Z = {v ∈ V | 〈α, v〉 = 0, α ∈ Π}.
(13.1g)

These are dual vector spaces under the restriction of the pairing between V
and V ∗.

Here is the general theoretical statement, due to Langlands (for a variety
of slightly different and illuminating perspectives, see [6], Lemma 4.4; [2],
Lemma IV.6.11; [3], Proposition 1.2; and [1], Proposition 1.16.

Theorem 13.2. In the setting (13.1), there is for each ν ∈ V ∗ a unique
subset A ⊂ Π and a unique expression

ν = λ− φ (λ ∈ C, φ ∈ P )

subject to the following requirements.

(1) The element φ is a combination of roots α ∈ A with strictly positive
coefficients:

φ =
∑

α∈A

aαα, aα > 0.

(2) The element λ vanishes on α∨ for all α ∈ A:

λ =
∑

α/∈A

cαχα + z (cα ≥ 0, z ∈ Z).

Of course there is a parallel statement for V . This formulation looks a
little labored: if one is willing to fix a W -equivariant identification of V with
V ∗ (and so to think of the pairing between them as a symmetric form on
V ) then the two requirements imposed on λ and φ may be written simply
as 〈λ, φ〉 = 0, and there is no need to mention A. But for our purposes
the most interesting output of the algorithm is the set A, which defines the
θ-stable parabolic q = q(µ). So mentioning this set in the statement of the
theorem, and constructing it directly, seem like reasonable ideas.

Proof. The uniqueness of the decomposition is [I think] a routine exercise;
what’s tricky is existence, and for that I’ll give a constructive proof. All
that we will construct is the set A. This we will do inductively. At each
stage of the induction, we will begin with a subset Bm ⊂ A. We will then
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test the simple roots outside A. Any root that fails the test must belong to
A, and will be added to the next set Bm+1. If all the roots outside of Bm

pass the test, then Bm = A, and we stop. The algorithm begins with the
empty set B0 = ∅, which is certainly a subset of A. Here is the inductive
test. For each simple root β /∈ Bm, construct the fundamental coweight

χ∨ = χ∨
β∨(Bm ∪ {β})

with respect to the simple roots consisting of Bm and β. This coweight
vanishes on the roots in Bm, but takes the value 1 on the root β. (I will say
a word about constructing this coweight in a moment.) The test we apply
is to ask whether 〈ν, χ∨〉 is non-negative. If it is, then β passes. If β fails,
then I claim that it must belong to A, and we add it to Bm+1. Here is why.
As a fundamental coweight, χ∨ is a nonnegative rational combination of β∨

and the various simple coroots in B∨
m ⊂ A

∨. It therefore has a non-negative
pairing with λ ∈ C; so if it is strictly negative on ν, then

0 < 〈φ, χ∨〉(13.3)

=
∑

α∈Bm

aα〈α, χ
∨〉+

∑

γ∈A−Bm

aγ〈γ, χ
∨〉(13.4)

The first sum is zero by construction of χ∨. Because χ∨ is a non-negative
combination of β∨ and coroots from Bm. every term in the second sum is
non-positive except the term with γ = β. Of course that term is present
only if β ∈ A, as we wished to show.

It remains to show that if every simple root outside Bm passes this test,
then Bm = A. Suppose Bm 6= A. We may therefore find a simple root β so
that

〈
∑

γ∈A−Bm

aγγ , β
∨〉 > 0.

Because a simple root and a distinct simple coroot have non-positive pairing,
this equation shows first of all that β ∈ A− Bm. We show that β fails the
test. Define

χ∨
0 = β∨ +

∑

α∈Bm

(−〈α, β∨〉)χ∨
α∨(Bm)(13.5)

= β∨ + δ∨(13.6)

This element is evidently in the Q-span of B∨
m∪{β

∨}, and its pairing with the
roots in Bm is zero. For its pairing with β, the coroot β∨ contributes 2, and
the terms from the sum are all non-negative (since the elements χ∨

α∨(Bm) are
non-negative combinations of simple roots which are in Bm, and therefore
distinct from β. So the pairing with β is at least two. Consequently

χ∨
0 = cχ∨, some c ≥ 2.

We are trying to prove that χ∨ has a strictly negative pairing with ν, so
it suffices to prove that 〈ν, χ∨

0 〉 < 0. We have already seen that χ∨
0 is a
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combination of roots in A, so its pairing with λ must be zero by condition
(2) of Theorem 13.2. Since ν = λ− φ, what we want to prove is

(13.7) 0 < 〈φ, χ∨
0 〉.

Since χ∨
0 is orthogonal to the roots in Bm, the left side is

= 〈
∑

γ∈A−Bm

aγγ, χ
∨
0 〉

= 〈
∑

γ∈A−Bm

aγγ, β
∨〉+

∑

γ∈A−Bm

aγ〈γ, δ
∨〉.

It follows from (13.5) that δ∨ is a non-negative combination of roots in Bm.
Consequently every term in the second sum is non-negative. The first term
is strictly positive by the choice of β, proving (13.7). �

14. Making a list of representations of K

Here is a way to make a list of the irreducible representations of K that
is compatible with the Langlands classification. As usual begin with a fun-
damental Cartan Hf , with Tf = Hf ∩K, and a fixed system

(14.1a) ∆+
c ⊂ ∆(K,Tf )

of positive roots for K. As in Definition 2.3, this choice provides a Borel
subalgebra

(14.1b) bc = tf + nc

corresponding to the negative roots.
The first serious step is to pick a representative of each Tfl-conjugacy

class of θ-stable parabolic subalgebras q = l + u such that

(1) the Levi subalgebra l contains hf ;
(2) the Borel subalgebra bc is contained in q; and
(3) the Levi subgroup L is split.

This is the same as picking representatives of K-conjugacy classes of θ-stable
q opposite to their complex conjugates, subject only to the last requirement
on the (unique) θ-stable real Levi subgroup L. These parabolic subalgebras
are in one-to-one correspondence with the corresponding Zuckerman unitary
representations A(q). The larger set of Tfl conjugacy classes of θ-stable q

subject only to conditions (1), (2), and

(3′) the group L has no compact simple factor

is already picked out by the software blocku command. Recognizing condi-
tion (3) is equally easy.

So we fix a collection

(14.1c) Q = {q}
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of representatives for the Tfl-conjugacy classes of parabolic subalgebras sat-
isfying conditions (1)–(3) above. For each q, fix a maximally split Cartan
subgroup

(14.1d) H ⊂ L,

with T = H ∩K as usual.
The goal is to list all the irreducible representations of K having a highest

weight µ so that the construction of Section 12 gives the parabolic q. The
disjoint union over q ∈ Q of these lists will be a parametrization of Π∗(K).
The list corresponding to q is a certain subset of the discrete final limit
parameters for H. Precisely,

(14.1e) P s,q,finlim
G,d (H) = {Φ ∈ P s,finlim

G,d (H) | Φ is strongly q-compatible}

The notion of “strongly compatible” was introduced in (10.6). We will
see that the set described by (14.1e) is essentially a set of characters of
T , subject to certain parity and positivity conditions. We want to make
this more explicit. First of all we invoke the notation of (10.6), writing in
particular

(14.1f) ∆+
im = ∆im(G,H) ∩ (−∆(u,H)) .

The assumption of weak compatibility from (10.6) means that

(14.1g) P s,q,finlim
G,d (H) ⊂ {Φ = (φ,∆+

im) | φ ∈ Π∗(T )};

that is, that we are looking only at parameters involving this particular
choice of positive imaginary roots. Recall also from (10.6) the character
ρcplx of T and the shift φq = φ⊗ ρcplx. The corresponding parameters for L
are

(14.1h) Φq = (φq, ∅) ∈ P
s
L,d(H).

With this notation, the characters φ of T that contribute to P s,q,finlim
G,d (H)

have the following characteristic properties.

(1) For each (necessarily real) root α ∈ ∆(L,H), φq(mα) = 1. Equiva-
lently, φ(mα) = ρcplx(mα).

This is the characteristic property of P s,finlim
L,d (H). It guarantees that the

principal series representation IL(Φq) has a unique lowest L∩K-type τq(Φ),
which is one-dimensional and L-spherical (Proposition 7.5). Consequently
τq(Φ) has a unique weight µq(Φ) ∈ Π∗(Tf ). We write

µ̃q(Φ) ∈ Π∗(Tfl(µq(Φ)))

for the extended highest weight of τq(Φ); recall (again from Proposition 7.5)
that this extended highest weight may be parametrized just by Φq (and so
by Φ). Define

µ̃(Φ) = µ̃q(Φ)⊗ 2ρ(u ∩ k) ∈ Π∗(Tfl(µq(Φ))), µ(Φ) = µ̃(Φ)|Tf

as in Theorem 9.6.



60 DAVID A. VOGAN, JR.

(2) The weight

ζ(Φ) = dφq + ρ(u)

takes non-positive values on every coroot of h in u. Equivalently, Φ
is strongly q-compatible.

This second requirement ensures (among other things) that Φ is a discrete
standard limit parameter. To ensure that Φ is final, we just need to arrange
I(Φ) 6= 0. This is equivalent to either of the next two requirements.

(3) The weight µ(Φ) ∈ Π∗(Tf ) is dominant for ∆+(K).

(3′) For each simple imaginary root α ∈ ∆+
im(G,H) which is compact,

we have

〈ζ(Φ), α∨〉 > 0.

Theorem 14.2. Suppose K is a maximal compact subgroup of the reductive
algebraic group G, Tf is a small Cartan subgroup of K, ∆+

c a choice of
positive roots for Tf in K, and other notation is as in (14.1). Fix a collection
Q = {q} of representatives for the θ-stable parabolic subalgebras satisfying
conditions (1)–(3) there. For each q ∈ Q, fix a maximally split Cartan

subgroup H ⊂ L, and define P s,q,finlim
G,d (H) as in (14.1e). Then there is a

bijection ∐

q∈Q

P s,q,finlim
G,d (H)↔ Π∗(K), Φ↔ τ(Φ).

Here the first term is a disjoint union of sets of discrete final limit param-
eters, and the bijection is that of Theorem 10.9 (described also in (14.1)
above).

Proof. That every irreducible representation of K appears in this corre-
spondence is clear from Theorem 10.9: to show that every θ-stable q can be
conjugated by K to be compatible with a fixed Tf and bc is elementary. To
see that the correspondence is one-to-one, suppose that (q1,Φ1) and (q2,Φ2)
are two parameters in this theorem, with τ(Φ1) = τ(Φ2). The algorithm of

Sections 12 and 13, for any Φ ∈ P s,q,finlim
G,d (H)), reconstructs q from one of

the highest weights of τ(Φ). It follows from this algorithm that q1 and q2

must be conjugate by Tfl/Tf (since this finite group acts transitively on the
highest weights of an irreducible representation τ of K). By the choice of
Q, necessarily q1 = q2. [Few more i’s to dot. More or less this means Φ1 is
conjugate to Φ2 by W (L,H); but this group acts trivially on discrete final
limit parameters.] �

Example 14.3. Suppose G = Sp4(R). In this case K = U2. We can choose
Tf = Hf = U1 × U1, so that Π∗(Tf ) ' Z2. Write {e1, e2} for the standard
basis elements of Z2. The root system is then

∆im,c = {±(e1 − e2)}, ∆im,n = {±2e1,±2e2,±(e1 + e2)}.

We choose

∆+
c = {e1 − e2}.
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Since K is connected, irreducible representations are parametrized precisely
by their highest weights, which are

{µ = (µ1, µ2) ∈ Z2 | µ1 ≥ µ2}.

There are exactly eight θ-stable parabolic subalgebras q having split Levi
factor and compatible with ∆+

c . I will list them, list the dominant weights
µ associated to each, and finally list the corresponding discrete final limit
parameters.

The first four are Borel subalgebras containing tf . For each I will list only
the two simple roots in the Borel subalgebra; these are the negatives of the
simple roots for the corresponding positive system.

q1 ↔ {−e1 + e2,−2e2}

{µ | µ1 ≥ µ2 ≥ 2}

{φ | φ1 − 1 > φ2 ≥ 1}

µ = φ− (1,−1).

q2 ↔ {−e1 − e2, 2e2}

{µ | µ1 − 1 ≥ −µ2 ≥ 0}

{φ | φ1 > −φ2 > 0}

µ = φ− (1,−1).

q3 ↔ {e1 + e2,−2e1}

{µ | 0 ≥ −µ1 ≥ µ2 + 1}

{φ | 0 > −φ1 > φ2}

µ = φ− (1,−1).

q4 ↔ {−e1 + e2, 2e1}

{µ | −2 ≥ µ1 ≥ µ2}

{φ | −1 ≥ φ1 > φ2 + 1}

µ = φ− (1,−1).

These four families of characters φ of Tf together exhaust the final standard
limit characters (Definition 4.1) which are K-dominant.

The large regions corresponding to q1 and q2 are separated by the line
µ2 = 1, and this line essentially corresponds to the next parabolic. The Levi
factor is L = U1 × Sp2, H12 = U1 ×GL1, so a (discrete) character φ of H12

is a pair (φ1, ε), with φ1 ∈ Z and ε ∈ Z/2Z. The corresponding parabolic
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and dominant weights are

q12 = q1 + q2, ∆(u1) = {−e1 ± e2,−2e1}

{µ | µ1 ≥ µ2 = 1}

{φ | φ1 ≥ 1, ε = 0}

µ = (φ1, 1).

In exactly the same way, the regions corresponding to q3 and q4 are sep-
arated by the line µ1 = −1, and this line essentially corresponds to the
next parabolic. The Levi factor is L34 = Sp2 × U1, with split Cartan
H34 = GL1 × U1, so a (discrete) character φ of H34 is a pair (ε, φ2), with
φ2 ∈ Z and ε ∈ Z/2Z. The corresponding parabolic and dominant weights
are

q34 = q3 + q4, ∆(u1 = {±e1 − e2,−2e2}

{µ | −1 = µ1 ≥ µ2}

{φ | φ2 ≤ −1, ε = 0}

µ = (−1, φ1).

The two Cartans H12 and H34 are conjugate; the conjugation identifies the
character (φ1, ε) of H12 with (ε, φ1) of H34. We have therefore accounted
for all of the even characters of H12 except the one with φ1 = 0. Since
the imaginary root is 2e1, this missing character violates condition (1) of
Definition 10.2 to be a standard limit character.

The regions corresponding to q2 and q3 are separated by the line µ1 +
µ2 = 0, and (most of) this line corresponds to a parabolic with Levi factor
L23 = U1,1, with split Cartan H23 = C×. A (discrete) character Φ of H23

corresponds to an integer j, best written in our root system coordinates as
(j/2,−j/2). The corresponding parabolic and dominant weights are

q23 = q2 + q3, ∆(u23) = {−e1 + e2,−2e1, 2e2}

{µ | µ1 = −µ2 > 0}

{φ = (j/2, j/2) | j > 0 even}

µ = (j/2, j/2).

The condition on φ that j should be even is just φq23
(mα) = 1 for the real

root α of H23. The condition j 6= 0 is condition (1) of Definition 10.2,
required to make φ a standard limit character. The Weyl group of H23 has
order 4 (generated by the involutions z 7→ z and z 7→ z−1 of C×), so it
includes elements sending j to −j. The characters attached to q23 therefore
exhaust the discrete final limit characters of H23 up to the conjugacy.

There remains only the trivial representation of K, corresponding to µ =
(0, 0). The corresponding parabolic is q0 = g, with Levi factor L0 = Sp2

and split Cartan H0 = GL1 ×GL1. The only discrete characters of H0 are
the four characters of order two; and only the trivial one is final (since the
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elements mα include all the non-trivial (±1,±1) ∈ GL1×GL1). The trivial
character φ corresponds to µ = 0.

15. G-spherical representations as sums of standard

representations

In order to complete complete the algorithm for branching laws from G
to K, we need explicit formulas expressing each irreducible representation
of K as a finite integer combination of discrete final standard limit repre-
sentations. We will get such formulas by reduction to the G-spherical case
(using cohomological induction as in Section 9). In the G-spherical case, we
will use a formula of Zuckerman which we now recall.

We begin as in Section 7 by assuming that

(15.1a) G is split, with θ-stable split Cartan Hs.

Fix a discrete final limit parameter

(15.1b) Φ0 ∈ P
s,finlim
G,d (Hs),

with

(15.1c) τ(Φ0) ∈ Π∗
G−sph(K)

the corresponding G-spherical representation of K (Proposition 7.5). Ac-
cording to Lemma 7.3, there is a unique extension

(15.1d) τ0 = τG(Φ0) ∈ Π∗
adm(G)

of τ(Φ0) to a (g,K)-module (acting on the same one-dimensional space) in
which s acts by zero. Zuckerman’s formula actually writes τ0 as an integer
combination of standard representations of G (in the Grothendieck group of
virtual representations); ultimately we will be interested only in the restric-
tion of this formula to K.

At this point we can drop the hypothesis that G be split, and work with
any one-dimensional character τ0 of G. (In fact Zuckerman’s identity is for
virtual representations of G, and it can be formulated with τ0 replaced by
any finite-dimensional irreducible representation of G.) We will make use
of the results only for G split, but the statements and proofs are no more
difficult in general.

Lemma 15.2. Suppose τ0 is a one-dimensional character of the reductive
group G. Suppose that H is a θ-stable maximal torus in G, and that ∆+ ⊂
∆(G,H) is a system of positive roots. Write T = H θ for the compact part of
H. Attached to this data there is a unique shifted Harish-Chandra parameter

Φ(∆+, τ0) = (φ(∆+, τ0),∆
+
im)

characterized by the following requirements.

(1) ∆+
im consists of the imaginary roots in ∆+.
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Define

ρim ∈ t∗ ⊂ h∗

as in Definition 10.2 to be half the sum of the roots in ∆+
im, and ρ ∈ h∗ to

be half the sum of ∆+. Define

ρcplx =
∑

pairs {α, θα}
cplx in ∆+

α|T ∈ Π∗
adm(T ).

(2) The differential of φ(∆+, τ0) is equal to ρ+ ρim + dτ0|h.
(3) The restriction of φ(∆+, τ0) to T is equal to

ρcplx + 2ρim + τ0|T .

The notation ρcplx is not inconsistent with that introduced in (10.6i), but
it is a bit different. In the earlier setting, we were interested in a positive
root system related to a θ-stable parabolic subalgebra, and therefore as close
to θ-stable as possible. For every complex root α, either α and θα were both
positive (in which case α contributed to ρcplx) or −α and −θα were both
positive (in which case −α contributed to ρcplx). In the present setting there
is a third possibility: that α and θα have opposite signs. In this third case
there is no contribution to ρcplx. The character defined here may therefore
be smaller than the one defined in (10.6i).

Proof. The first point is to observe that the two roots α and θα have the
same restriction to T = Hθ, so ρcplx is a well-defined character of T . It is
very easy to check that

(15.3) ρ|t = dρcplx + ρim :

the point is that complex pairs of positive roots {β,−θβ} contribute zero to
ρ|t.

Now a character χ of H is determined by its differential dχ ∈ h∗ and by its
restriction χT ∈ Π∗(T ) to T ; the only compatibility required between these
two things is d(χT ) = (dχ)|t. The two requirements in the lemma specify
the differential of φ(H,∆+, τ0) and its restriction to T , and (15.3) says that
these two requirements are compatible. It follows that φ(H,∆+, τ0) is a well-
defined character of H. To see that it is shifted parameter for a standard
representation, use Definition 10.2 and the fact that ρ and ρim are both
dominant regular for ∆+

im. (Because τ0 is a one-dimensional character of G,
its differential is orthogonal to all roots.) �

In order to state Zuckerman’s formula, we need one more definition: that
of “length” for the shifted parameters in Lemma 15.2. All that appears
in an essential way in the formulas is differences of two lengths; so there
is some choice of normalization in defining them. From the point of view
of the Beilinson-Bernstein picture of Harish-Chandra modules, the length
is related to the dimension of some orbit of K on the flag variety of G.
The most natural normalizations would define the length to be equal to the
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dimension of the orbit, or equal to its codimension. In fact the original
definition is equal to neither of these (but rather to the difference between
the dimension of the given K orbit and the minimal K orbits). Changing the
definition now would surely introduce more problems than it would solve.

Definition 15.4 ([7], Definition 8.1.4). Suppose H is a θ-stable maximal
torus in G (cf. (5.1)), and that ∆+ ⊂ ∆(G,H) is a system of positive roots.
The length of ∆+, written `(∆+), is equal to

dimC Bc,0 − [(1/2)#{α ∈ ∆+ complex | θα ∈ ∆+}+ #∆+
im,c + dimT ].

If b is the Borel subalgebra corresponding to ∆+, then the term in square
brackets is the dimension of b ∩ k: that is, of the isotropy group at b for
the action of K on the flag variety of G. The first term is the maximum
possible value of this dimension, attained precisely for H fundamental and
∆+ θ-stable.

The definition in [7] is written in a form that is more difficult to explain;
rewriting it in this form is a fairly easy exercise in the structure of real
reductive groups. Here is Zuckerman’s formula.

Theorem 15.5 (Zuckerman; cf. [7], Proposition 9.4.16). Suppose G is a
reductive group and τ0 is a one-dimensional character of G. Define

r(G) = (number of positive roots for G)− (number of positive roots for K).

Then there is an identity in the Grothendieck group of virtual admissible
representations of finite length

τ0 = (−1)r(G)
∑

H

∑

∆+

(−1)`(∆+)I(Φ(∆+, τ0)).

The outer sum is over θ-stable Cartan subgroups of G, up to K-conjugacy;
and the inner sum is over positive root systems for ∆(G,H), up to the
action of the Weyl group W (G,H). The shifted Harish-Chandra parameter
Φ(∆+, τ0) is defined in Lemma 15.2, and the standard representation I(Φ)
in Proposition 10.3.

The number r(G) is the codimension of the minimal orbits of K on the
flag manifold of G; so r(G)− `(∆+) is the codimension of the K orbit of the
Borel corresponding to ∆+. The left side of the formula is (according to the
Borel-Weil theorem) the cohomology of the flag variety with coefficients in
a (nearly) trivial bundle. The terms on the right side are local cohomology
groups along the K orbits, with coefficients in this same (nearly) trivial
bundle. The equality of the two sides—more precisely, the existence of
a complex constructed from the terms on the right with cohomology the
representation on the left—can be interpreted in terms of the “Grothendieck-
Cousin complex” introduced by Kempf in [4].

Proof. From the definition of the standard representations in Proposition
10.3, it is clear that I(Φ + (τ0|H)) ' I(Φ) ⊗ τ0. In this way we can reduce
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to the case when τ0 is trivial. That is the case treated in [7], Proposition
9.4.16. �

The terms in this sum correspond precisely to the orbits of K on the flag
variety for G. For the split real form of E8, there are 320, 206 orbits. (The
command kgb in the present version of the atlas software first counts these
orbits, then provides some descriptive information about them.)

Using the branching laws in Section 11, we can immediately get a version
of Zuckerman’s formula for arbitrary representations of K.

Theorem 15.6. Suppose G is a reductive group and (τ, E) is an irreducible

representation of K. Let Φ ∈ P s,finlim
G,d (H) be a discrete final limit parameter

so that τ(Φ) = τ is the unique lowest K-type of IG(Φ) (Theorem 10.9).
Choose a strongly Φ-compatible parabolic subalgebra q = l+u as in (10.6), so
that τq is a one-dimensional L-spherical character of L∩K. In particular, τq

is the unique lowest L∩K-type of the principal series representation IL(Φq).

τ(Φ) = (−1)r(L)
∑

H1⊂L

∑

∆+

∑

A⊂∆(uop∩s)

(−1)|A|+`(∆+)IG(Φ(∆+, τq)
q
g + 2ρ(A))|K

Here the outer sum is over θ-stable Cartan subgroups of L, up to conjugacy
by L∩K, and the next sum is over positive root systems for ∆(L,H1), up to
the action of W (L,H1). The translation from the parameter Φ(∆+, τq) for
L to a parameter for G is accomplished by (11.3). The character 2ρ(A) is
any extension to H1 (for example, the one trivial on A1,0) of the character
of T1 on the sum of the weights in A.

Since the left side in this theorem is a representation only of K and not
of G, this is not an identity (as in Zuckerman’s formula) of virtual repre-
sentations of G. The parameters for G appearing on the right need not
be standard limit parameters (although the “first term,” corresponding to
H1 = H, is just (Φq)

q
g = Φ). In order to get a formula expressing the irre-

ducible representation τ(Φ) of K in terms of standard limit representations
of G, we therefore need to rewrite the terms on the right. [Onward and
upward...]
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